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초록

영속성 메모리는 DRAM의 성능과 SSD의 비휘발성을 결합한 저장 기술이다. 데이터를 바이트 단위로 읽고
저장할 수 있다는 특징을 지니며 이를 통해 저장 시스템의 성능을 향상시킬 수 있다. 그러나 영속성 메모리
에서 프로그램을 안전하고 효율적으로 설계하기 위해선 예기치 않은 크래시로 인해 발생하는 다음 두 가지

문제를해결해야한다: (1)명령어수준에서는 CPU명령어순서바뀜현상을올바르게파악해야하고 (2)객체
수준에서는데이터손실을방지하면서높은성능을얻기위해자료구조를신중하게설계해야한다.

이논문은바이트단위영속성을위한프로그래밍원리를엄밀한형식으로제공하여이러한문제를해결

한다. 첫째, CPU명령어순서바뀜현상을파악하기위해주요아키텍처인 Intel-x86과 Armv8에대해하드웨어
영속성 실행의미 모델인 Px86view과 PArmv8view를 제공한다. 이를 기반으로 개발한 검사기를 통해 대표적인
영속성 프로그램들의 올바름을 검증한다. 둘째, 데이터 손실 없는 고성능 영속성 자료구조를 설계하기 위한
프로그래밍 프레임워크인 Memento를 제공한다. Memento를 기반으로 설계된 영속성 자료구조는 임의의
크래시에도안전함이증명되었고,기존의수동최적화된영속성자료구조와유사한성능을보인다.

핵심낱말 영속성메모리,크래시일관성,엄밀한실행의미,느슨한영속성,프로그래밍모델,영속성자료구조

Abstract

Persistent memory (PM) is an emerging storage technology that combines the performance of DRAM with the
durability of SSD, offering the benefits of both. A key feature of PM is its byte-addressable persistency, enabling
data to be efficiently loaded and stored with byte-level granularity. This capability is crucial for enhancing
performance by adapting various data structures and algorithms for DRAM to storage devices. However, designing
these approaches in PM presents significant challenges due to the potential for crashes, particularly in addressing
two types of persistency challenges: (1) at the instruction level, managing CPU instruction reordering that
complicates the understanding of persistent programs; and (2) at the object level, carefully designing and
composing data structures to prevent data loss while maintaining high performance.

This dissertation presents systematic programming principles to tackle these challenges through formal

abstractions for byte-addressable persistency, advancing the reliability and performance of PM systems. (1) To
address the challenge of managing CPU instruction reordering, we present Px86view and PArmv8view: hardware
persistency semantic models that formally standardize instruction descriptions for major architectures, Intel-x86
and Armv8, in a unified manner using the notion of views. Based on these models, we develop a model checker
to verify the correctness of several representative persistent programs. (2) To address the challenge of designing
crash-consistent and high-performance data structures, we presentMemento: a programming framework for
PM that ensures generally applicable to various data structures and algorithms. We prove that data structures
designed using Memento are crash-consistent and perform comparably to existing hand-tuned alternatives.

Keywords persistent memory, crash consistency, formal semantics, weak persistency, programming model,
durable data structure
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Chapter 1. Introduction

Persistent memory (PM) technology, such as Samsung’s recently announced CMM-H [Samsung 2024] and
Kioxia’s XL-FLASH [Kioxia 2024], simultaneously provides (1) low-latency, high-throughput, and fine-grained
data transfer capabilities as DRAM does; and (2) durable and high-capacity storage as SSD does. As such, PM has
the potential to radically change the way we build fault-tolerant systems by optimizing traditional and distributed
file systems [Kwon et al. 2017; Kadekodi et al. 2021; Chen et al. 2021; Lu et al. 2017; Kim et al. 2021a; Xu and
Swanson 2016], transaction processing systems for high-velocity real-time data [Meehan et al. 2015], distributed
stream processing systems [Wang et al. 2021], and stateful applications organized as a pipeline of cloud serverless
functions interacting with cloud storage systems [Setty et al. 2016; Zhang et al. 2020].

A key characteristic of PM is its fine-grained persistency, which enables read and write operations to directly
access individual bytes of persistent data. For example, Intel’s PMDK, an open-source PM library, utilizes mmap()
to map PM to virtual memory, supporting direct memory access [Intel 2023]. Similarly, Samsung’s SMDK employs
the CXL.mem interface [Samsung 2022] to achieve the same objective. Moreover, both Intel Optane Persistent
Memory and Samsung CMM-H’s CXL.mem interface transfer data at cache line granularity [Blankenship 2020].

Leveraging the fine-grained access to PM, data structures or algorithms that are traditionally implemented
for DRAM can be directly applied to PM, which sets PM apart from traditional coarse-grained (i.e., block-based)
storage. For instance, lock-free data structures that employ fine-grained synchronization for concurrency control
is a potential candidate for PM-based transaction processing systems. This is because persistent data can be
directly modified using atomic operations such as compare-and-swap (CAS) or fetch-and-add, available in modern
CPUs [Intel 2024a; Arm 2020]. Moreover, PM can indeed benefit from lock-free mechanisms in two ways:
efficiency and resilience. Specifically, (1) Lock-free approaches offer enhanced efficiency by providing greater
potential for parallelizing workloads, spreading memory accesses across numerous contention points [David et al.
2018]. For example, the time and space overhead associated with logging—stemming from the central contention
point at the tip and the recording of all intermediate changes—can be avoided. (2) They enhance resilience
by simplifying crash consistency. The single commit point concept in typical lock-free algorithms maintains
consistent data states at every moment, obviating the need for supplementary crash consistency mechanisms, as
long as updates to the data structures are promptly flushed to PM. Thanks to these benefits, building lock-free
storage systems in PM is a potential alternative to the traditional approach of using locks and logging-based
transactions.

Problem However, building PM programs is challenging due to the risk of crashes. Crashes can occur for
various reasons, such as power failure, hardware failure, or software bugs. In the context of PM, crashes are
particularly problematic because caches and registers are volatile, whereas PM is persistent. This discrepancy can
lead to inconsistent states in the event of a crash for two reasons: (1) the state of PM may not include all previous
writes to the data structure that were still in the cache and not yet flushed into PM; and (2) the state of PM may
contain only a portion of the data structure that was being updated at the time of the crash.

To ensure the consistency of PM programs in the event of crashes, developers must meticulously design
crash-consistent algorithms. These algorithms must ensure that the program’s state remains consistent despite
crashes. However, the necessity for crash consistency introduces additional complexity and typically incurs
performance overhead. This is because implementing recovery mechanisms, such as logging, checkpoints, or
transactions, inherently imposes performance penalties on the system.
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Figure 1.1: Our challenges for building byte-addressable storage systems.

Therefore, to fully harness the potential of PM, we require programming principles that ensure the correctness
of programs in the presence of crashes without compromising performance. These challenges encompass various
layers, from PM hardware to application development, aiming to develop a comprehensive understanding of the
opportunities that PM presents, as illustrated in Fig. 1.1. This dissertation is structured in two main parts, which
are briefly summarized below.

Chapter 2: Hardware Semantic Models As a foundational step, we develop hardware semantic models to
describe program behaviors in the context of PM. Having such models is essential for system developers to reason
about program behaviors effectively and develop reliable programs on the hardware.

However, accurately describing program behaviors on PM is challenging due to the reordering of persistency
instructions. Specifically, the effects of store instructions may reach PM in an out-of-order fashion in the event
of a system crash, a phenomenon known as relaxed persistency. To maintain the intended invariants set by
developers in a program, it is crucial to properly control this reordering. Fortunately, two major architectures,
Intel-x86 and Armv8, provide a flush instruction that acts as a persistency fence to prevent reordering. However,
flush is an expensive instruction and should be used only when absolutely necessary.

Thus, we require a semantic model that accurately depicts the hardware’s persistency reordering behavior.
Recent work has proposed several persistency models for mainstream architectures such as Intel-x86 and Armv8,
describing the order in which writes are propagated to NVM. However, these models have several limitations;
most notably, they either lack operational models or do not support persistent synchronization patterns.

In this chapter, we address the gap by revamping the existing persistency models. Inspired by recent
advancements in view-based semantics [Kang et al. 2017; Lee et al. 2020; Pulte et al. 2019], we first introduce a
unified operational style for describing persistency through views. This includes the development of view-based
operational persistency models: Px86view for Intel-x86 and PArmv8view for Armv8, with PArmv8view representing
the first operational model for Armv8 persistency. Next, we propose a unified axiomatic style for describing
hardware persistency, which enables us to recast and improve the existing axiomatic models of Intel-x86 and
Armv8 persistency. We demonstrate that our axiomatic models are equivalent to the authoritative semantics
reviewed by Intel and Arm engineers. We prove that each axiomatic hardware persistency model is equivalent to
its operational counterpart. Finally, we develop a persistent model checking algorithm and tool, which we use to
verify several representative examples.

This chapter heavily builds on the work and writing presented in the following paper:
[Cho et al. 2021b] Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, Jeehoon Kang. Revamping Hardware
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Persistency Models: View-Based and Axiomatic Persistency Models for Intel-X86 and Armv8. PLDI 2021.

Chapter 3: A General Programming Model Despite the well-defined system layer with libraries for PM
programming, a new programming approach is required to build crash-safe high-level applications. Designing
persistent objects that can be composed in a crash-consistent manner is not straightforward. For instance, even
if two persistent data structures are crash-consistent, data loss can occur if their operations are sequentially
composed. To prevent this, persistent data structures must adhere to a sufficiently robust correctness criterion.

One of the most widely used correctness criteria for persistent concurrent data structures is detectable
recoverability [Friedman et al. 2018], which ensures both thread safety (correctness in non-crashing concurrent
executions) and crash consistency (correctness in crashing executions). However, existing approaches to designing
detectably recoverable concurrent data structures are either constrained to simple algorithms or incur high runtime
overheads.

In this chapter, we presentMemento: a general and high-performance programming framework for detectably
recoverable concurrent data structures in persistent memory (PM). To ensure general applicability across various
data structures, Memento supports primitive operations such as checkpoint and compare-and-swap, along with
their composition using control constructs. To achieve high performance, Memento employs a timestamp-based
recovery strategy that requires fewer writes and flushes to PM compared to existing approaches. We formally
prove thatMemento ensures detectable recoverability in the event of crashes. To demonstrateMemento, we
implement a lock-free stack, list, queue, and hash table, as well as a combining queue, all of which detectably
recover from random crashes in stress tests and perform comparably to existing hand-tuned persistent data
structures, both with and without detectable recoverability.

This chapter heavily builds on the work and writing presented in the following paper:
[Cho et al. 2023b] Kyeongmin Cho, Seungmin Jeon, Azalea Raad, Jeehoon Kang. Memento: A Framework for

Detectable Recoverability in Persistent Memory. PLDI 2023.

Outline The remainder of this dissertation is structured as follows. §2 presents hardware semantic models
for persistency in Intel-x86 and Armv8 architectures. §3 presents a general programming model for detectable
recoverability in PM. Finally, §4 concludes this dissertation with a summary of our contributions and future work.
Additionally, §A and §B provide appendices for §2 and §3, respectively, offering supplementary details including
full definitions and proofs.
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Chapter 2. Hardware Semantic Models

2.1 Introduction

As discussed in §1, it is widely believed that PM will eventually supplant volatile memory [Pelley et al.
2014], allowing efficient access to persistent data. This belief is backed by industrial support. Specifically, the two
major architectures, Intel-x86 and Armv8 which together account for almost 100% of the desktop and mobile
market, have extended their official specifications to support persistent programming [Arm 2020; Intel 2024a].
Intel has further released open-source PM libraries such as PMDK [Intel 2024d], and manufactured its own line of
PM, Optane DC persistent memory [Intel 2024b], with an extended academic study evaluating its performance
[Izraelevitz et al. 2019]. PM is therefore expected to innovate high performance transactional systems [Volos et al.
2011; Liu et al. 2017; Lu et al. 2016; Kolli et al. 2016; Beadle et al. 2020; Hwang et al. 2015] and large-scale memory
systems [Oukid et al. 2017; Shan et al. 2017; Lu et al. 2017].

However, building correct transactional systems over persistent memory is difficult in part due to relaxed per-
sistency: writes to PM locations may not be persisted to memory in the program order due to micro-architectural
optimizations such as out-of-order execution, store buffering, or caching protocols. For instance, consider the
programs below:

(a) Data := 42

(b) Commit := 1
(CommitWeak)

(a) Data := 42

(b) flush Data

(c) Commit := 1

(Commit1)

Hereafter we assume all program variables in our examples are locations in PM1 initialized to 0; variable reads
and writes are architecture-level load and store instructions, e.g. mov on Intel-x86 and ldr, str in Armv8; and
that flush represents a persistency fence, e.g. clflush on Intel-x86 and dc.cvap; dsb.sy on Armv8.2

In both examples we aim to establish the invariant I △
= Commit=1 ⇒ Data=42 even in case of an

unexpected crash. In the case of CommitWeak without a persistency fence, we fail to establish I over mainstream
architectures such as Intel-x86 and Armv8: the two stores may persist to PM out of order, thereby allowing
Commit=1,Data=0 upon crash recovery. By contrast, in the case of Commit1 the persistency fence at b
ensures that the two stores persist in the intended (program) order, thereby establishing the invariant I . Micro-
architecturally, flush Data blocks until the previous store on Data at a is persisted to PM, thus ensuring that the
store at c always persists after that of a. As such, persistency fences are expensive and should be used sparingly.

Relaxed persistency is further complicated in multi-threaded settings. Consider the following program with
two threads:

(a) Data := 42 (b) if (Data != 0) {

(c) flush Data

(d) Commit := 1 }

(Commit2)

This example differs from Commit1 in that Data and Commit are written to by different threads. Once again, if
the fence at c were removed, the desired invariant I would no longer hold: although the store on Data at a may
be propagated (made visible) to the the right thread through cache coherence protocols, it may not be persisted
to PM prior to the crash. As before, the fence at c ensures that the store at a (which was propagated to the right
thread before c) persists to PM before the store at d, thus establishing I .

1As in [Raad et al. 2019b], we assume all locations are durable locations in PM.
2Armv8 recently introduced the dc.cvadp instruction that, unlike dc.cvap, guarantees persistence even in case of battery/hardware

failures [Arm 2020]. We focus on dc.cvap in this dissertation, but most discussions also apply to dc.cvadp.
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Note that during normal (non-crashing) executions, under both Intel-x86 and Armv8 no thread can observe
the undesirable behavior Commit=1,Data=0 even without the fence at c, underlining the difference between
the consistency order (the order in which stores are propagated across threads) and the persistency order (the
order in which stores are persisted to PM). In general, relaxed concurrency models constrain the consistency
order, while relaxed persistency models additionally constrain the persistency order, further compounding the
complexity of relaxed concurrency.

In order to facilitate correct persistent programming with efficient use of persistency fences, existing work
includes several persistency models [Pelley et al. 2014; Chakrabarti et al. 2014; Kolli et al. 2017; Gogte et al. 2018;
Raad and Vafeiadis 2018; Raad et al. 2019a,b; Khyzha and Lahav 2021]. However, as we discuss below, these
models have several shortcomings.

Problem To our knowledge, no existing persistency model (except for PTSOsyn [Khyzha and Lahav 2021],
discussed shortly below) satisfies all of the following properties simultaneously:

(A) Describing mainstream architectures or languages: For a persistency model to be widely used and
applied, it should describe the persistency behavior of mainstream hardware/software platforms such as
readily available architectures, e.g. Intel-x86 [Intel 2024a] and Armv8 [Arm 2020], and ubiquitous languages,
e.g. C/C++, over which several persistent libraries are implemented [Intel 2024d; Hwang et al. 2015]. Moreover,
the model should be sufficiently relaxed that the behaviors observable on existing platforms are also allowed
by the model. Otherwise, invariants that hold according to the model would be invalidated by executions on
such platforms, rendering the model unsound for reasoning.

(B) Supporting persistent synchronization patterns: A persistency model should support common synchro-
nization patterns used in practical implementations of persistent objects, e.g. transactions or file systems. For
instance, a model should prohibit undesirable behaviors, e.g. Commit=1,Data=0 in Commit1 and Commit2
that capture the essence of practical implementations of transactional systems. In particular, the model
should be sufficiently strict that unobservable behaviors on existing platforms are also forbidden by the
model. Otherwise, admitting unobservable behaviors in the model makes it impossible to reason about such
patterns. Moreover, a model should serve as an objective correctness criteria for new, more efficient designs
of persistent objects, and in doing so, guide such new designs.

(C) Operational: An operational persistency model is desirable in that it enables stepping through an execution
for debugging purposes. Moreover, operational models are more suitable for building high-level reasoning
techniques such as program logics. By contrast, axiomatic models constrain the admitted behaviors through
a set of axioms over full executions, making them undesirable for step-by-step reasoning (e.g. as in program
logics).

The models of Pelley et al. [2014]; Raad and Vafeiadis [2018]; Kolli et al. [2017]; Gogte et al. [2018]; Chakrabarti
et al. [2014] do not satisfy (A). Specifically, Pelley et al. [2014]; Kolli et al. [2017]; Gogte et al. [2018]; Chakrabarti
et al. [2014] present language-level persistency models put forward as academic proposals, and are not sup-
ported by mainstream programming languages. Similarly, Raad and Vafeiadis [2018] propose a hardware persis-
tency model, PTSO, by integrating buffered epoch persistency [Pelley et al. 2014] with the TSO architecture of
x86/SPARC [Sewell et al. 2010]. However, PTSO is not supported by mainstream architectures of Intel-x86 and
Armv8.

The PArmv8 model [Raad et al. 2019a, “PARMv8”] describes the persistency semantics of the Armv8
architecture, but is not operational (C). Moreover, as we discuss shortly in §2.2, the PArmv8 model is too weak
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Figure 2.1: Relationship among Intel-x86 and Armv8 models.

in that it violates multi-copy atomicity. Similarly, the Px86 model [Raad et al. 2019b] describes the persistency
semantics of the Intel-x86 architecture operationally and axiomatically.3 However, as we discuss shortly, Px86 is
too relaxed and does not always support persistent synchronization patterns in the presence of I/O (B).

Khyzha and Lahav [2021] developed the PTSOsyn model for Intel-x86 that fixes the Px86 problem regarding
I/O and satisfies (A)–(C). However, they do not discuss this problem as they have a different motivation, i.e.
presenting a model that better matches the developers’ intuition [Khyzha and Lahav 2021, §1]. We discuss
PTSOsyn in more detail later in §2.8.

Our Solution, Contributions and Outline We propose a unified operational style for describing relaxed
persistency using views, and develop view-based persistency models of Intel-x86/Armv8 that satisfy all three
(A)–(C) properties. In doing so, we develop the first operational model for Armv8 persistency. Our operational
models highlight 2 flaws in the existing (axiomatic) persistency models of Intel-x86 and Armv8. To remedy this,
we develop a unified axiomatic style for persistency, adapt the the existing Intel-x86/Armv8 persistency models to
our unified style, and repair their flaws.

The remainder of this chapter is organized as follows:

• We discuss the shortcomings of the existing persistency models of Intel-x86/Armv8 and present an intuitive
account of our solution as view-based models (§2.2).

• We develop x86view, a new view-based model for Intel-x86 concurrency (§2.3).

• We develop Px86view (§2.3.5) and PArmv8view (§2.6.2), respectively extending the x86view and Armv8view [Pulte
et al. 2019] models to account for persistency.

• We present Px86axiom (§2.4) and PArmv8axiom (§2.6.3), our axiomatic models of Intel-x86 and Armv8 persistency
that simplify and repair the state-of-the-art models of the respective architectures [Raad et al. 2019b,a]. We

3In [Raad et al. 2019b], the authors introduce two persistency models for Intel-x86: Px86man which formalizes the ambiguous and
under-specified behavior described in the Intel reference manual [Intel 2024a], and Px86sim which simplifies and strengthens Px86man to
capture the architectural intent envisaged by Intel engineers. In this dissertation we focus on the Px86sim model and simply refer to it as Px86.
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prove that our axiomatic models are equivalent to the authoritative semantics reviewed by Intel and Arm
engineers, modulo our proposed fixes (§2.4.4 and §2.6.3). Our proposed fix in PArmv8axiom has been reviewed
by Arm engineers.

• We prove that Px86view and PArmv8view are equivalent to Px86axiom and PArmv8axiom, respectively. The
equivalence proof is mechanized in Coq (§2.5 and §2.6.4).

• We develop a stateless model checker for persistency and use it to verify several representative examples
under PArmv8view (§2.7). We conclude with related and future work (§2.8).

We present an overview of the concurrency and persistency models we present in this chapter in Fig. 2.1,
summarizing their relationship with existing models in the literature.

2.2 Overview

We discuss the shortcomings of Px86 and PArmv8 as regards to (B) (§2.2.1 and §2.2.2). We then present
an intuitive account of our key idea to provide a persistency model that satisfies all three desired properties in
(A)–(C) simultaneously (§2.2.3).

2.2.1 The Px86 Model and Synchronous Flushes

The Px86 model [Raad et al. 2019b] is too weak in that its instruction for propagating stores to PM behaves
asynchronously: executing clflush under Px86 does not block execution, and merely guarantees that the pending
stores on the given location will be persisted to PM at some future point. For instance, if the generic flush
Data instruction in Commit1 is replaced with its Intel-x86 analogue, clflush Data, then once clflush Data

is executed, there is no guarantee under Px86 that the earlier stores on Data (including that at a) are persisted
to PM; rather (1) these stores will be persisted to PM at some future point; and (2) they will be persisted to PM
before all future stores (including that at c). In other words, the persistency ordering guarantees of clflush in (2)
allows us to establish the desired invariant I , even though the effect of clflush Data may not immediately take
place.

The asynchronous behavior of clflush is observable in the presence of external operations as they narrow
down possible crash points through additional observations. For instance, consider the variant of Commit1 below
where we replace the store to Commit with an analogous I/O operation that writes “commit” to file on disk:

(a) Data := 42 (d) if (Flag != 0) {

(b) flush Data (e) log(file,"commit")}

(c) Flag := 1

(CommitE)

Let us write C to denote that file contains "commit". Under Px86 it is possible to observe the post-crash state
S : Data=0∧C ; i.e. when the I/O operation is executed, the asynchronous effect of clflushmay not have taken
place yet.

As such, to support persistency synchronization patterns such as CommitE in the presence of external
operations under Px86, we must strengthen Px86 by modeling the behavior of clflush synchronously. Let us
write SPx86 for a strengthening of Px86 in which clflush instructions are executed synchronously, i.e. they
block until all pending stores on the location are persisted to PM. In the absence of external operations such as I/O
or network messages, the asynchronous behavior of clflush cannot be observed, i.e. SPx86 is indistinguishable
from Px86. By contrast, in the presence of external operations, only SPx86 satisfies an invariant analogous to that
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of Commit1: C ⇒ Data=42; i.e. once the I/O operation is executed, the synchronous effect of clflush must
have taken place and S cannot be observed.

2.2.2 The PArmv8 Model and Multi-Copy Atomicity

The PArmv8 model [Raad et al. 2019a] is too weak in that it violates the principles of multi-copy atomicity

(MCA) which ensures that a write by one thread is made visible to all other threads simultaneously. Although
Armv8 was originally non-MCA, it was recently simplified to observe MCA [Pulte et al. 2017]. However,
the persistency extension of Armv8 in PArmv8 violates MCA by allowing the following behavior regarding
persistency:

(a) Y := 1 (f) X := 1

(b) dsb.sy (g) dsb.sy

(c) flushopt x (h) flushopt y

(d) dsb.sy (i) dsb.sy

(e) Z := 1 (j) W := 1

(FlushMCA)

Executing flushopt X persists all pending stores on the same cache line as X asynchronously.4 Moreover, if
flushopt X is followed by a data synchronization barrier, dsb.sy, its effects take place synchronously; i.e.
executing dsb.sy awaits the completion of all earlier flushopt by the same thread.

We argue that MCA should preclude the post-crash state S : Z = W = 1 ∧ X = Y = 0. First, to observe
Z = W = 1 after a crash, the two threads should have fully executed to the end. Second, to observe Y = 0 after a
crash, (a) should not have been made visible to (h) prior to the crash, and thus (h) must be ordered before (a).
Third, (g) must be ordered before (h) and (a) before (b) because (g) and (b) are fences. Transitively, (g) must be
ordered before (h), (a), and then (b). As such, (f) should be visible to (c), thus ensuring X = 1 after the crash
and precluding the behavior in S.5

To ensure MCA for persistency, we must thus strengthen PArmv8 by enforcing an order between a flush
(e.g. c) and a write on the same location that is not persisted by the flush (e.g. f ). Let us write SPArmv8 for such
a strengthening of PArmv8. Under SPArmv8, if X = 0 after a crash, then (c) is ordered before (f); (a) is ordered
before (h); Y = 1 is persisted to the PM; and thus S cannot be observed.

Upon discussing FlushMCA with engineers at Arm, they confirmed that this non-MCA behavior is indeed
prohibited and our proposal in §2.6.3 is the correct interpretation of Arm architecture reference manual [Arm
2020].

2.2.3 Our Solution: View-Based Operational Models

We present view-based operational models for the relaxed persistency behavior of Intel-x86/Armv8 architec-
tures that satisfy all three properties in (A)–(C). We build our model over the view-based model of Armv8/RISC-V
relaxed-memory concurrency [Pulte et al. 2019]. Intuitively, view-based models [Kang et al. 2017; Lee et al. 2020;
Pulte et al. 2019] combine two key ideas: (1) recording the entire store history in the memory and allowing threads
to read old values; and (2) imposing ordering constraints with per-thread views representing the set of stores
propagated to each thread and thus constraining the outcomes of future loads and stores by a thread. Here, we
further introduce the notion of persistency views for each location l, denoting the set of stores on l that have
persisted to PM and thus will survive a crash.

4For the sake of uniformity with our respective Intel-x86 models, we write flushopt X in lieu of the Armv8 instruction dc cvap X.
5The reader may have noted that this behavior is forbidden even if the dsb.sy at (b) and (g) are replaced with the weaker dmb.sy. We

opt for dsb.sy to simplify the example by using only one kind of fence.
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Figure 2.2: A view-based execution of Commit1.

We next illustrate these ideas through a view-based execution of Commit1 in Fig. 2.2, comprising a single
thread tid . At each execution stage, the store history is recorded in memory as an indexed (timestamped, e.g. @1)
list of stores; the view of tid records (the timestamp of) the latest store propagated to tid (the tid -labelled arrow);
and the persistency view of each location l records (the timestamp of) the latest store on l that has persisted to
PM (the PM[l]-labelled arrows).

The initial memory isM = [], denoting the empty history (no stores have executed), depicted as init at
timestamp 0 (@0); the tid view is v = @0 (no stores have propagated to tid ); and the persistency view of each
location l is vPM[l] = @0 (no stores on l have persisted to PM). Subsequently:

(a) Executing Data := 42 appends its store to memory (M = [⟨Data := 42⟩@1]), and advances the tid view
(v = @1): the store is executed by and thus propagated to tid .

(b) Executing flush Data joins the persistency view of Data with the tid view (vPM[Data] = @1), ensuring
that the latest Data store propagated to tid is persisted to PM.

(c) Analogously, executing Commit := 1 yields v = @2 andM = [⟨Data := 42⟩@1, ⟨Commit := 1⟩@2].

The post-crash outcomes (PM contents) are then determined by the persistency views. Concretely, after a crash
each PM location l may contain a value written by a store whose timestamp is at least vPM[l]. For instance, if a
crash occurs after executing flush Data, then in the post-crash state vPM[Data] = @1 and thus Data = 42@1;
i.e. Data := 42 must have persisted to PM, establishing invariant I .

We next describe an execution of Commit2, where tid1 and tid2 denote the left and right threads, respectively.
Initially, the memory isM = []; the persistency view is vPM = λl.@0; and the tid i view is vi = @0 (for i ∈ {1, 2}).
Then:

(a) Executing Data := 42 yields M=[⟨Data := 42⟩@1], v1=@1.

(b) Thread tid2 may then load Data = 42 as its view timestamp (v2 = @0) is less than @1 of Data := 42. After
loading Data = 42, the tid2 view is joined with @1: v2 = @1.

(c) Executing flush Data yields vPM[Data] = @1.

(d) Executing Commit := 1 results in M = [⟨Data := 42⟩@1, ⟨Commit := 1⟩@2] and v2 = @2.

As with Commit1, the invariant I holds in case of a crash.
Our models indeed satisfy all desired properties. (A) Our models capture the persistency behavior of the

mainstream Armv8 and Intel-x86 architectures. Specifically, we prove that our models are equivalent (modulo
fixes) to the axiomatic models of Raad et al. [2019a,b] reviewed by Intel/Arm engineers. Our equivalence proof is
mechanized in Coq [Coq 2024] and is publicly available [Cho et al. 2021a]. (B) Our models support persistent
synchronization patterns such as those of Commit1 and Commit2. (C) Our models are operational as with the
existing family of view-based models [Kang et al. 2017; Pulte et al. 2019]. Furthermore, to support reasoning about
programs over our models, we develop a stateless model checking algorithm and tool for persistency verification,
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p ::= s1 || . . . || sn

s ∈ Stmt ::= skip | s1; s2 | if e then s1 else s2 | while (e) s | r := e

| r := pload(e) | store [e1 ] e2 | r := rmw rop [e]

| fencef | flush e | flushopt e

rop ∈ Rmw ::= fetch-op op e | cas e1 e2

f ∈ F ::= sfence | mfence

e ∈ Expr ::= v | r | (e1 op e2) op ∈ O ::= + | − | . . .

v ∈ Val = Z r ∈ VReg = N l ∈ PLoc = Val

Figure 2.3: Intel-x86 concurrency and persistency language.

and use it to verify several representative examples under PArmv8view.6 Our model checking tool and verified
examples are open-source and publicly available [Cho et al. 2021a].

2.3 Px86view: A View-Based Model for Intel-x86 Persistency

We develop Px86view, a view-based model for Intel-x86 persistency. We present a simple language for
Intel-x86 concurrency and persistency (§2.3.1) used throughout this section. We develop x86view, a new Intel-x86
concurrency model we use as a baseline (without persistency) and its two key ideas: store histories (§2.3.2) and
views (§2.3.3); we describe how we support read-modify-writes (§2.3.4). We then extend x86view with persistency
and develop Px86view (§2.3.5).

2.3.1 Language for Intel-x86 Persistency

To keep our presentation concrete, we use the language in Fig. 2.3 for Intel-x86 concurrency and persistency.
A program p consists of concurrent statements run by distinct threads. A statement s is given by the standard
‘while’ language over register machines with concurrent memory instructions. The instruction r := pload(e)

reads from the (PM) location denoted by expression e and returns it in register r. The store [e1] e2 reads the
value denoted by e2 and stores it at the location denoted by e1. Analogously, r := rmw rop [e] evaluates the
expressions rop, performs an RMW (‘read-modify-write’) operation (e.g. ‘compare-and-swap’) on the location
denoted by e, and returns its old value in r. Finally, fencef issues a memory ‘fence’ such as sfence or mfence;
and flush e and flushopt e persist to PM the pending stores on the cache line containing the location given by
e.

2.3.2 The x86view Model

We present x86view, our view-based operational model for Intel-x86 concurrency, in Fig. 2.4. Our design
of x86view is inspired by Armv8view, a view-based concurrency model of Armv8 [Pulte et al. 2019]. As Intel-x86
concurrency is simpler than that of Armv8, we develop x86view by removing certain Armv8view features. Here, we
highlight the interesting aspects of Intel-x86 and refer the reader to §A.1 for the full details.

6As a proof of concept, we focus on model checking only Armv8 persistency. This is sufficient to showcase the feasibility of model
checking for hardware persistency since Armv8 is more complex than Intel-x86 with a bigger search space. We believe it is straightforward to
adapt our approach to Intel-x86 persistency, especially given our unified semantic style for persistency.
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⟨T⃗ ,M⟩ ∈ Machine
△
= (TId → Thread)×Memory

tid ∈ TId
△
= N T ∈ Thread

△
= Stmt× TState

M ∈ Memory
△
= list Msg w ∈ Msg

△
= ⟨loc :PLoc; val :Val; tid :TId⟩

⟨l := v⟩tid
△
= ⟨loc= l; val=v; tid= tid⟩ t ∈ Time

△
= N v ∈ V △

= Time

ts ∈ TState
△
=

〈
σ : VReg → Val ;

coh : PLoc → V ; vrNew : V ;

〉

(init)

p = s1 || . . . || sn

init(p, ⟨λtid . ⟨stid , ⟨σ = λ_. 0; coh = λ_. @0; vrNew = @0⟩⟩, []⟩)

(machine)

T⃗ [tid ],M →tid T ′,M ′

⟨T⃗ ,M⟩ → ⟨T⃗ [tid 7→ T ′],M ′⟩

(not-overwritten)

∀t ∈ (v2, v1]. M [t].loc ̸= l

v1 ⊑M,l v2

(store)

l = Je1Kts.σ v = Je2Kts.σ ts.coh[l] ⊑ t ⊔l ts.coh[l] ⊑ t

t = |M |+ 1 M ′ = M ++ [⟨l := v⟩tid@t] ts′ = ts[coh[l] 7→ t]

(store [e1] e2, ts),M →tid (skip, ts′),M ′

(load)

l = JeKts.σ M [t] = ⟨l := v⟩ ts.coh[l] ⊑ t ts.vrNew ⊑M,l t

ts′ = ts[σ[r] 7→ v, coh[l] 7→ t, vrNew 7→⊔ t ̸= ts.coh[l] ? t]

(r := pload(e), ts),M →tid (skip, ts′),M

(mfence)

ts′ = ts[vrNew 7→⊔ ⊔l ts.coh[l]]

(mfence, ts),M →tid (skip, ts′),M

Figure 2.4: States and transitions of x86view (excerpt).

States We represent a machine as a pair ⟨T⃗ ,M⟩, comprising a thread map T⃗ and a memory M . A thread map
associates each thread with a statement and a thread state. A thread state ts ∈ TState consists of a register map,
σ, assigning values to registers, and per-thread ‘views’ (described in §2.3.3). A memory is a list of messages; a
message is a triple ⟨l := v⟩tid comprising a memory location (l), a value stored (v), and the id (tid ) of the thread
storing it. We write ⟨l := v⟩tid@t to denote that ⟨l := v⟩tid is issued at timestamp (index) t, starting from index
@1. For simplicity, we assume a memory contains the initial message ⟨l := 0⟩@0 for each l.

Transitions of x86view In the initial state for a program p (init), thread statements are those in p; the register
maps are λ_.0; the views are @0; and the memory is empty ([]).

The transitions for control flow and assignment are standard (omitted). The (machine) transition of x86view
models thread interleaving as in sequential consistency (SC) [Lamport 1979].

Nevertheless, x86view allows relaxed (weaker than SC) behaviors since it records the entire history of stores in
its memory as a list of messages, and allows threads to read stale values. Ignoring the colored premises (described
later), when executing a store (store), a thread determines the location l and the value v, and appends a new
message ⟨l := v⟩ to the memory. Analogously, when executing r := pload(e) (load), a thread determines the
location l, chooses a message ⟨l := v⟩@t from the memory, and assigns v to r in the register map. Crucially,
the chosen message need not be the latest one, thus allowing a stale value to be read. However, the chosen
message should not have been overwritten (not-overwritten) from the thread’s point of view. We describe
the remaining transitions shortly.
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Table 2.1: Informal description of concurrency views.

View Past Future

coh[l]
Upper bound of

past reads and writes on l

Lower bound of
future reads and writes on l

vrNew
Upper bound of past updates;
upper bound of external reads

(from other threads)

Lower bound of
future reads

Store Buffering Recording stores as messages allows store buffering, a representative relaxed behavior of
Intel-x86:

(a) X := 1 (c) Y := 1

(b) r1 := y // = 0 (d) r2 := x // = 0
(SB)

While the relaxed outcome r1 = r2 = 0 is prohibited under SC, it is allowed under Intel-x86 and may arise
in x86view by: (a) writing ⟨X := 1⟩tid1

@1; (b) reading ⟨Y := 0⟩@0; (c) writing ⟨Y := 1⟩tid2
@2; and most

importantly, (d) reading the old value ⟨X := 0⟩@0 that is overwritten by (a).

2.3.3 Concurrency Views

The model described thus far is too weak in that it allows behaviors prohibited under Intel-x86. We next
describe how we strengthen the model to forbid such behaviors through views, as summarized in Table 2.1.

Coherence Intel-x86 orders loads and stores on the same location in a single thread as illustrated below:

(a) X := 20 // = @2 (d) r2 := Y // = @4

(b) X := 10 // ̸= @1 (e) Y := 30 // ̸= @3 · · ·
(c) r1 := X // ̸= @1 (f) r3 := Y // ̸= @3

(Coh)

The first thread issues ⟨X := 20⟩@2, and then writes to X again and reads from it. Coherence orders (a)
before (b) and (c) since they access the same location, thus forbidding them from accessing earlier timestamps,
e.g. @1. Similarly, the second thread reads the message ⟨Y := 40⟩@4, and then writes to Y and reads from it
again. Coherence orders (d) before (e) and (f) as they access the same location, thus forbidding them from
accessing earlier timestamps, e.g. @3.7

To enforce coherence, we introduce coherence views that record past thread behaviors and simultaneously
constrain future thread behaviors. Specifically, for each location l, a thread state ts records a coherence view
in ts.coh[l] as a timestamps (initialised to @0) representing an index in memory. The ts.coh[l] represents
the maximum (latest) timestamp observed for l by the thread; moreover, it forbids the thread from accessing
messages of l with earlier timestamps than ts.coh[l]. Put formally, in (load) and (store) we additionally require
ts.coh[l] ⊑ t in the premise and update ts′.coh[l] 7→ t in the conclusion.

These changes indeed forbid the undesirable behavior in Coh: (a) updates ts.coh[X] to @2, forbidding (b)

and (c) from accessing @1. Similarly, (d) updates ts.coh[Y] to @4, forbidding (e) and (f) from accessing @3.
7Indeed, coherence between an access and a write is already enforced through (store) : stores always append messages to the end of

memory. Nevertheless, we explicitly order them with views to achieve (i) uniformity with other coherence orders and (ii) correspondence
with Armv8view, where stores may add messages in places other than the end of memory.
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Message Passing In addition to coherence, Intel-x86 orders certain accesses on different locations via ‘message
passing’:

(a) Data := 42 (c) r1 := Flag // = 1

(b) Flag := 1 (d) r2 := data // ̸= 0
(MP)

If the right thread reads 1 is from Flag, then it should read 42 from Data as (a) is ordered before (d) as follows:

• (a) before (b): A load or store is ordered before later stores. To enforce this, in (store) we additionally
require

⊔
l ts.coh[l] ⊑ t in the premise.8

• (b) before (c): A store is ordered before loads that read from it (“message passing”). This is already enforced
as the store message read by the load is issued before it.

• (c) before (d): A load is ordered before a later load. To enforce this, we introduce the new-read view.
Specifically, a thread state ts includes a ‘new-read’ view, ts.vrNew, recording the maximum (latest) view
previously read by the thread. Moreover, it forbids the thread’s future loads (on any location) from reading
messages that are overwritten by ts.vrNew. Put formally, in (load) we require ts.vrNew ⊑M,l t (i.e. t is not
overwritten by ts.vrNew inM as far as l is concerned; see (not-overwritten) for details) in the premise
and ts′.vrNew 7→⊔ t (shorthand for ts′.vrNew = ts.vrNew ⊔ t) in the conclusion.

These changes ensure ‘message passing’ in MP: (a) the left thread issues ⟨Data := 42⟩@1, updating
ts1.coh[Data] to @1; and (b) issues ⟨Flag := 1⟩@2, updating ts1.coh[Flag] to @2; (c) the right thread reads
⟨Flag := 1⟩@2, updating ts2.coh[Flag] and ts2.vrNew to @2; (d) it then cannot read ⟨Data := 0⟩@0 as
ts2.vrNew = @2 ̸⊑M,Data @0.

Store Buffering with Fences As shown in SB, Intel-x86 may reorder a store and a later load on different
locations. If necessary, one can prevent this by inserting fences:

(a) X := 1 (d) Y := 1

(b) mfence (e) mfence

(c) r1 := y // = 0 (f) r2 := x // ̸= 0

(SBFence)

To model this, in the conclusion of (mfence) we join ts.vrNew with
⊔

l ts.coh[l], thus forbidding store
buffering. Without loss of generality, assumeM=[⟨X := 1⟩@1, ⟨Y := 1⟩ @2]. The right thread then (d) issues
⟨Y := 1⟩@2, updating ts2.coh[Y] to @2; (e) executes mfence, updating ts2.vrNew to @2; and (f ) cannot read
⟨X := 0⟩@0 as ts2.vrNew=@2 ̸⊑M,X @0.

Forwarding By strengthening x86view we have precluded forbidden Intel-x86 behaviors. However, x86view is
now too strong and must be weakened to allow store forwarding:

(a) X := 1 (d) Y := 1

(b) r1 := X // = 1 (e) r3 := Y // = 1

(c) r2 := Y // = 0 (f) r4 := X // = 0

(SBFwd)

While (b) and (c) are ordered, (a) and (c) are not because (b) is forwarded from (a) in the same thread, thus
allowing the reordering of (a) after (b) and (c). To model this, in (load) the new-read view is joined with
the read message’s timestamp only if it is written by a different thread. This is denoted by the conditional

8The astute reader may have noticed that this condition is stronger than the coherence requirement ts.coh[l] ⊑ t and thus makes it
redundant. Nevertheless, we explicit include the two conditions to emphasize the two requirements, namely coherence and ordering.
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(rmw-fail)

l = JeKts.σ M [t] = ⟨l := v⟩ JropKts.σ(v,⊥)

ts.coh[l] ⊑ t ts.vrNew ⊑M,l t ts′ = ts[σ[r] 7→ v, coh[l] 7→ t, vrNew 7→⊔ t ̸= ts.coh[l] ? t]

(r := rmw rop [e], ts),M →tid (skip, ts′),M

(rmw)

l = JeKts.σ M [t1] = ⟨l := v1⟩ JropKts.σ(v1, v2)

t2 = |M |+ 1 M ′ = M ++ [⟨l := v2⟩tid@t2] t2 − 1 ⊑M,l t1 ts.coh[l] ⊑ t1, t2 ts.vrNew ⊑M,l t1

⊔l ts.coh[l] ⊑ t2 ts′ = ts[σ[r] 7→ v1, coh[l] 7→ t2, vrNew 7→⊔ ⊔l ts.coh[l] ⊔ t2]

(r := rmw rop [e], ts),M →tid (skip, ts′),M ′

Figure 2.5: RMW transitions of x86view.

notation ts′.vrNew 7→⊔ t ̸= ts.coh[l] ? t, stating that if t ̸= ts.coh[l], then ts′.vrNew 7→⊔ t; otherwise, ts′.vrNew is
left unchanged. These changes then admit the behavior in SBFwd. Without loss of generality, assumeM = [⟨X :=

1⟩@1, ⟨Y := 1⟩@2]. The right thread (d) writes ⟨Y := 1⟩@2, updating ts2.coh[Y] to @2; (e) reads ⟨Y := 1⟩@2,
without updating ts2.vrNew thanks to forwarding; and (f ) reads ⟨X := 0⟩@0 as ts2.vrNew = @0 ⊑M,X @0.

2.3.4 Supporting Read-Modify-Writes (RMW)

The RMW transitions (Fig. 2.5) are obtained by combining the transitions of loads, stores andmfences. A failed
RMW (rmw-fail) degenerates to a load;9 if an RMW fails, then JropKts.σ(v1,⊥) holds (e.g. Jcas 4 5Krmap(3,⊥)

but not Jcas 4 5Krmap(4,⊥)10). A successful RMW (rmw) atomically reads from and writes to a location; if an
RMW succeeds, then JropKts.σ(v1, v2) holds (e.g. Jcas 3 5Krmap(3, 5) or Jfetch-add 1Krmap(4, 5)). Moreover,
atomicity requires that there be no intervening messages on the same location between those read and written by
the RMW; i.e. t2 − 1 ⊑M,l t1. Lastly, as with mfences, we join ts.vrNew with

⊔
l ts.coh

′[l].
As we show in §2.5, our x86view model is equivalent to the authoritative axiomatic model reviewed by Intel

engineers.

2.3.5 Persistency Views

We next develop Px86view by extending x86view with persistency. As discussed in §2.2.3, the key idea is
persistency views, determining persisted messages as summarized in Table 2.2.

Synchronous Flush As shown in Fig. 2.6, in order to model the behaviour of flush instructions synchronously,
we extend a thread state ts with a persistency view, ts.vpCommit. For each location l, the ts.vpCommit[l] denotes
the maximum view (timestamp) of the messages on l that have persisted to PM. Executing a flush (flush)

determines the location l, and for each location l′ on the same cache line as l, joins ts.vpCommit[l
′] with the

maximum coherence view v , thus persisting those messages of l′ propagated to the thread (i.e. all earlier writes
on l′). (The asynchronous persistency view, ts.vpAsync[l′], will be described shortly.) After a crash (crash), the

9The semantics of failed RMWs in Intel-x86 is not fully agreed upon in the literature. Our model assumes a failed RMW to degenerate to a
load; an alternative model may additionally assume that failed RMWs execute a memory fence. Nevertheless, we can straightforwardly adapt
our model to support this by extending (rmw-fail) with the effects of (mfence).

10Here we assume compare-and-swaps are strong: they do not fail spuriously. In our Coq formalization, we also support weak compare-
and-swaps.
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Table 2.2: Informal description of persistency views.

View Past Future

vpReady

Upper bound of
past external reads
(from other threads)

Lower bound of
messages to be asynchronously flushed

by future flushopt

vpAsync[l]

Upper bound of
past flush/flushopt

on the same cache line as l

Lower bound of
messages on l to be persisted
by future fences/updates

vpCommit[l]

Upper bound of past
(1) flush l′; and

(2) flushopt l′ followed by fences/updates,
where l′ is on the same cache line as l

Lower bound of
persisted messages on l to survive a crash

contents of PM, SM (‘sequential memory’), satisfy the following condition for each location l: SM [l] holds the
value of some message on l whose timestamp t is not overwritten by any thread’s persistency view on l.

This indeed establishes the invariant I △
= Commit=1 ⇒ Data=42 for Commit2. After executing the left

thread, M = [⟨Data := 42⟩@1]. The right thread (b) reads ⟨Data := 42⟩@1, updating ts2.coh[Data] and
ts2.vrNew to @1; (c) persists the message ts2.coh[Data] = @1, updating ts2.vpCommit[Data] to @1; and (d) writes
⟨Commit := 1⟩@2. After a crash, if ⟨Commit := 1⟩@2 has persisted, then (d) must have been executed;
therefore ts2.vpCommit[Data] = @1 and Data = 42.

Asynchronous Flush flushopt is a weaker variant of flush that may be reordered after certain instructions,
and thus its execution may be delayed until a later fence/RMW. This may improve performance when persisting
multiple locations:

(a) Data1 := 42 (c) if (Data2 != 0) {

(b) Data2 := 7 (d) flushopt Data1

(e) flushopt Data2

(f) sfence

(g) Commit := 1 }

(CommitOpt)

Similarly to Commit2, the invariant I ′ △
= Commit=1 ⇒ Data1=42 ∧ Data2=7 always holds. The sfence (f)

awaits the completion of both (d) and (e), reducing I/O latency.
To model flushopt instructions, we extend a thread state ts with (1) ts.vpReady, denoting the view to

be persisted asynchronously at a subsequent flushopt; and (2) ts.vpAsync[l], denoting the maximum view of
messages on l that have been persisted asynchronously.

The additional transitions of Px86view are given in Fig. 2.6. Executing flushopt l (flushopt) or flush l

(flush) joins, for each location l′ on the same cache line as l, ts.vpAsync[l′] with ts.vpReady and the maximum
coherence view, v , of the cache line. Executing a fence in (mfence) and (sfence), or a successful RMW in
(rmw), joins ts.vpCommit with ts.vpAsync and ts.vpReady with

⊔
l ts.coh[l]. Executing a load or a failed RMW in

(load) and (rmw-fail) joins ts.vpReady with the read message’s timestamp unless forwarded.
This allows us to establish I ′ for CommitOpt. Without loss of generality, let M = [⟨Data1 :=

42⟩@1, ⟨Data2 := 7⟩@2]. The right thread then (c) reads ⟨Data2 := 7⟩@2, updating ts2.coh[Data2],
ts2.vrNew and ts2.vpReady to @2; (d, e) asynchronously persists ts2.vpReady = @2 to Data1 and Data2,
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ts ∈ TState
△
=
〈

...; vpReady : V ; vpAsync, vpCommit : PLoc → V ;
〉

(flush)

l = JeKts.σ v = ⊔l′ts.coh[l
′] ts′ = ts[vpAsync 7→⊔ λl′. cl(l, l′) ? v , vpCommit 7→⊔ λl′. cl(l, l′) ? v ]

(flush e, ts),M →tid (skip, ts′),M

(flushopt)

l = JeKts.σ v = ⊔l′ cl(l, l
′) ? ts.coh[l′] ts′ = ts[vpAsync 7→⊔ λl′. cl(l, l′) ? (v ⊔ ts.vpReady)]

(flushopt e, ts),M →tid (skip, ts′),M

(sfence)

ts′ = ts[vpReady 7→⊔ ⊔l ts.coh[l], vpCommit 7→⊔ ts.vpAsync]

(sfence, ts),M →tid (skip, ts′),M

(load)

· · · ts′ = ts[· · · , vpReady 7→⊔ t ̸= ts.coh[l] ? t]

(r := pload(e), ts),M →tid (skip, ts′),M

(crash)

∀l. ∃t. M [t] = ⟨l := SM [l]⟩ ∧ ∀(_, ts) ∈ T⃗ . ts.vpCommit[l] ⊑M,l t

⟨T⃗ ,M⟩ →crash SM

Figure 2.6: States and transitions of Px86view where the highlighted rule denotes the extension of load transition
from Fig. 2.4 as shown; the premises of mfence, rmw and rmw-fail are analogously extended and omitted
here.

updating ts2.vpAsync[Data1], ts2.vpAsync[Data2] to @2; (f) awaits the completion of (d) and (e), updating
ts2.vpCommit[Data1] and ts2.vpCommit[Data2] to @2; (g) writes ⟨Commit := 1⟩@3. After a crash, if ⟨Commit :=

1⟩@3 is persisted, then (g) must have been executed; ts2.vpCommit = [Data1 7→ @2,Data2 7→ @2]; and thus
Data1 = 42 and Data2 = 7.

The resulting model, Px86view, is proven equivalent to the authoritative axiomatic model reviewed by Intel
engineers [Raad et al. 2019b] (modulo the fix discussed in §2.2.1 – see §2.5).

2.4 Fixing and Simplifying the Px86 Model

We present Px86axiom, a new axiomatic model for Intel-x86 persistency that simplifies Px86 [Raad et al. 2019b]
and fixes its flaws discussed in §2.2.1. We present a short background on axiomatic models (§2.4.1); describe the
baseline axiomatic model for Intel-x86 concurrency (§2.4.2); extend it to persistency and present Px86axiom (§2.4.3);
and compare Px86axiom with Px86, proving their equivalence modulo our fixes in Px86axiom (§2.4.4).

2.4.1 Background on Axiomatic Models

Executions and Events In the literature of axiomatic (a.k.a. declarative) memory models, the traces of shared
memory accesses of a program are represented as a set of executions, where each executionG is a graph comprising:
(i) a set of events (graph nodes); and (ii) a number of relations on events (graph edges). We typically use a, b and
e to range over events. Each event captures the execution of a primitive command (e.g. a load) and is a triple of
the form e=(n, tid, l), where n∈N is the (unique) event identifier ; tid∈TId identifies the executing thread; and
l∈Lab is the event label. Event labels are defined by the underlying memory model; for Intel-x86 a label l may
be (1) (R, x, v) for reading (loading) value v from location x; (2) (W, x, v) for writing (storing) value v to location
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obs = co ∪ rfe ∪ fre

dob = ([W ∪ U ∪R]; po; [W ∪ U ∪R]) \ (W ×R)

bob = [W ∪ U ∪R]; po; [MF ]; po; [W ∪ U ∪R]

ob = obs ∪ dob ∪ bob

(rf; po?) irreflexive (co-rw)

(fr; po) irreflexive (co-wr)

ob acyclic (external)

Figure 2.7: The x86axiom model [Alglave et al. 2014].

x; (3) (U, x, v, v′) for a successful update (RMW) modifying x to v′ when its value matches v; (4) MF for executing
an mfence. The functions loc, rval and wval respectively project the location, the read value and the written
value of a label, where applicable. For instance, loc(l)=x and wval(l)=v for l=(W, x, v). The functions thrd
and lab respectively project the thread identifier and the label of an event.

Notation Given a relation r on a set A, we write r? and r+ for the reflexive and transitive closures of r,
respectively. We write r−1 for the inverse of r; [A] for the identity relation on A, i.e. {(a, a) | a ∈ A}; and
Ax for {a ∈ A | loc(a)=x}. We write ri for the internal subset of r (on events of the same thread), i.e.
ri △
= {(a, b) ∈ r | thrd(a)=thrd(b)}; and re for the external subset of r (on events of different threads). Finally,

we write r1; r2 for the relational composition of r1 and r2, i.e. {(a, b) | ∃c. (a, c) ∈ r1 ∧ (c, b) ∈ r2}.

Definition 2.4.1 (Executions). An execution, G, is a tuple of the form (E, po, rf, co), where:

• E is a set of events, including a set of initialisation events, I ⊆ E, comprising a single write event with label

(W, x, 0) for each x ∈ PLoc. The set of read events in E is: R
△
= {e ∈ E | ∃x, v. lab(e)=(R, x, v)}; the sets of

writes (W ), RMW (U ) and memory fence (MF ) events are analogous.

• po ⊆ E ×E denotes the ‘program-order’ relation, defined as a disjoint union of strict total orders, each ordering

the events of one thread, together with I × (E \ I) that orders initialisation events before all others.

• rf ⊆ (W ∪ U)× (R ∪ U) denotes the ‘reads-from’ relation on events of the same location with matching

values; i.e. (a, b) ∈ rf ⇒ loc(a)=loc(b)∧ wval(a)=rval(b). Moreover, rf is total and functional on its range,

i.e. every read/update is related to exactly one write/update. A read/update may be rf-related to an initialisation

write.

• co ⊆ E ×E is the ‘coherence-order’, defined as the disjoint union of relations {cox}x∈PLoc, such that each cox

is a strict total order onWx ∪ Ux and Ix × ((Wx ∪ Ux) \ I) ⊆ cox.

In the context of an execution graph (E, po, rf, co), we define the ‘from-reads’ relation as fr △
= rf−1; co. Note

that in this initial stage, executions are unrestricted: there are few constraints on rf and co. Such restrictions are
determined by the set of model-specific consistent executions. We next define execution consistency for several
models.
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(axioms of x86axiom (Fig. 2.7))

fob = [W ∪ U ∪R]; po; [FL]

∪ ([U ∪R] ∪ ([W ]; po; [MF ∪ SF ])); po; [FO]

∪ [W ]; (po; [FL])?; (po ∩ CL); [FO]

ob = obs ∪ dob ∪ bob ∪ fob ∪ pf ∪ fp (redefined)

pf ⊆ (obs ∪ dob ∪ bob ∪ fob ∪ fp)+ (pf-min)

P = dom(pf; ([FL] ∪ ([FO]; po; [MF ∪ SF ∪ U ])))

∀l. ∃w. SM(l) = wval(w) ∧ (P × {w}) ∩ Loc ⊆ co? (persist)

Figure 2.8: The Px86axiom model.

2.4.2 The x86axiom Model [Alglave et al. 2014]

As the baseline axiomatic model for Intel-x86, we use that of Alglave et. al. [Alglave et al. 2014], presented
in Fig. 2.7, which we refer to as x86axiom.11 We choose x86axiom as the baseline as it is stylistically similar with
Armv8axiom [Pulte et al. 2019], thus allowing a more uniform treatment of Intel-x86 and Armv8 persistency.

The co-rw (‘coherence-read-write’) axiom requires that loads not read from later stores; co-wr (‘coherence-
write-read’) ensures that loads do not read values overwritten by earlier stores; and external, ensures that
externally visible events can be linearized with respect to the ‘ordered-before’ relation (ob). The existence of such
a globally-agreed order of events makes x86axiom multi-copy-atomic.

The ob relation enforces the order (a, b) if: (1) a is a store overwritten by b (co); (2) a is a store read by b in a
different thread (rfe); (3) a reads a value overwritten by b in a different thread (fre); (4) a, b are accesses by the
same thread and (a, b) ̸∈W ×R (dob); or (5) a, b are accesses by the same thread and are separated by a fence
(bob).

Coherence between two writes (resp. two reads) is derived from the axioms. Specifically, co ∪ ([W ∪
U ]; po; [W ∪ U ]) ⊆ ob and acyclicity of ob ensure irreflexivity of co; po. Similarly, (fre; rfe) ∪ (fri; rfi) ∪ ([U ∪
R]; po; [U ∪R]) ⊆ ob and acyclicity of ob ensure irreflexivity of fr; rf; po.

2.4.3 The Px86axiom Model

We extend x86axiom with persistency semantics and develop the Px86axiom model as presented in Fig. 2.8. We
first define:

• FL and FO: the set of synchronous flush (flush) and asynchronous flush (flushopt) events, respectively;

• SF : the set of sfence events;

• pf ⊆ (W ∪ U)× (FL ∪ FO): the ‘persists-from’ relation, relating each flush to the co-latest store for each
location persisted by the flush. This is analogous to the rf relation; however, while rf relates a load to a single
store, pf may relate a flush to multiple stores (one for each location) on the same cache line.

• fp △
= pf−1; co: the ‘from-persists’ relation (analogous to fr), relating a flush to co-later stores (cf. fr △

= rf−1; co).
11For clarity, we rename the relations and axioms in [Alglave et al. 2014] to highlight its similarity with the axiomatic model for Armv8

concurrency [Pulte et al. 2019].
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The ob relation is extended with fob (‘flush-ordered-before’ ), ordering earlier events and a later flush as per
the Intel manual [Intel 2024a]. Furthermore, pf and fp are included in ob for the same reason rf and fr are; i.e.
because Intel-x86 is multi-copy atomic. P denotes the set of writes that must be persisted, i.e. those writes that
are persisted by a synchronous (FL) or an asynchronous flush (FO) followed by a fence (MF ∪ SF ∪ U ).12 The
persist axiom states that in case of a crash, the persisted value (in PM) of each location l in SM [l] should not be
coherence-before the writes in P . For simplicity, the pf-min axiom ensures that P is minimal, i.e. a flush persists
only those writes that are strictly ordered before it. However, this minimality axiom is optional (Theorem 2.4.2).

Lemma 2.4.2. A behavior is allowed under Px86axiom with axiom pf-min iff it is allowed under Px86axiom without

pf-min.

Proof. The proof is given in §A.3.

2.4.4 Comparing Px86axiom to Px86 in [Raad et al. 2019b]

Fix Our Px86axiom model indeed fixes the Px86 shortcomings described in §2.2.1. In particular, as discussed in
§2.2.1, we first strengthen Px86 to SPx86 by additionally requiring that flush instructions behave synchronously
– see Fig. A.8 and Fig. A.9 for the definitions of Px86 and SPx86.13 In Theorem 2.4.3 below we then prove that
Px86axiom and SPx86 are equivalent.

Theorem 2.4.3. A behavior is allowed under SPx86 iff it is allowed under Px86axiom.

Proof. The proof is given in §A.4.

The Px86 and SPx86 models are based on the axiomatic Intel-x86 model known as TSO [Owens et al. 2009;
Sewell et al. 2010], henceforth referred to as x86man (given in Fig. A.8). As such, in order to prove Theorem 2.4.3
we first show that x86man and x86axiom are equivalent. In particular, existing equivalence results between x86man

and x86axiom cover loads and stores only and not RMWs and fences [Alglave 2012]. We extend this result for the
first time to cover RMWs and fences in Theorem 2.4.4 below.

Theorem 2.4.4. A behavior is allowed under x86man iff it is allowed under x86axiom.

Proof. The proof is given in §A.4.2.

Simplification Our Px86axiom model is simpler than Px86 in [Raad et al. 2019b] in the following aspects:

• While tso (‘total store order’), nvo (‘non-volatile order’), and P (‘persisted stores’) components of Px86 are
existentially quantified, thus increasing non-determinism, the analogous ob and P in Px86axiom are constructed.

• While the conditions for intra-thread, inter-thread, and CPU-PM communications are intertwined in Px86,
they are separated and constrained by distinct axioms in Px86axiom: intra-thread ones by co-rw and co-wr,
inter-thread ones by external and CPU-PM ones by persist. To achieve this, Px86axiom orders fewer flush
events than the Intel reference manual [Intel 2024a] does; e.g. unlike the manual, Px86axiom does not order
FL before R.

12One may expect an asynchronous flush to complete also when the thread terminates. But this is defined neither in the Intel manual [Intel
2024a] nor in its libraries [Intel 2024d]. We thus assume an asynchronous flush not to be completed when a thread terminates. However, we
can easily change this by appending TERM toMF ∪ SF ∪ U , where TERM denotes thread termination. Analogously, we can adapt
Px86view in §2.3 to account for terminated threads.

13For clarity, we adapted Px86 from [Raad et al. 2019b] to match our style.
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• Px86axiom may optionally require the minimality of pf, which is beneficial for e.g. reducing the search space
significantly for stateless model checking. By contrast, Px86 does not require a similar minimality in tso.

As we show in §2.5, the constructive and succinct nature of Px86axiom and its stylistic similarity to the axiomatic
Armv8 model [Pulte et al. 2019] make it easier to prove its equivalence to Px86view.

2.5 Equivalence of Px86view and Px86axiom

To evaluate the fidelity of Px86view, we show that it is equivalent to Px86axiom. To do this, we first prove the
equivalence of x86view and x86axiom by adapting the equivalence proof of the view-based and axiomatic models
for Armv8 concurrency [Pulte et al. 2019], and then generalize it to Intel-x86 persistency. All theorems in this
section are mechanized in Coq [Cho et al. 2021a].

Equivalence of x86view and x86axiom In order to reuse the existing equivalence proof of the view-based and
axiomatic models for Armv8 concurrency [Pulte et al. 2019] maximally, we appeal to a new model, x86prom, the
promising view-based model for Intel-x86 concurrency, as the bridge between x86view and x86axiom. Compared to
x86view, x86prom additionally allows ‘promises’, modeling speculative writes (see §2.6.2). Specifically, we employ
the following proof strategy:

(1) We prove that x86view and x86prom are equivalent and that promises do not enable additional behaviors as
their effect is cancelled out by concurrency views (Theorem 2.5.1).

(2) We prove that x86prom and x86axiom are equivalent by adapting the analogous equivalence proof for Armv8
concurrency [Pulte et al. 2019] as x86prom and x86axiom respectively have the same style as the (view-based)
Armv8view and (axiomatic) Armv8axiom models of Armv8 concurrency.

Combining the two steps we then establish the desired equivalence in Theorem 2.5.2.

Lemma 2.5.1. A behavior is allowed under x86prom iff it is allowed under x86view.

Theorem 2.5.2. A behavior is allowed under x86view iff it is allowed under x86axiom.

Equivalence of Px86view andPx86axiom Wenext extend Theorem 2.5.2 to Intel-x86 persistency (Theorem 2.5.3).
To do this, we relate each view of an x86view execution to a set of events in the corresponding x86axiom execution;
similarly for the persistency views in Px86view. For example, the vpCommit view of a thread state is related to the
set P of persisted writes in the corresponding Px86axiom execution. This then allows us to prove the equivalence
of Px86view and Px86axiom.

Theorem 2.5.3. A behavior is allowed under Px86axiom iff it is allowed under Px86view.

2.6 View-Based and Axiomatic Models for Armv8 Persistency

In §2.3-§2.5, we presented view-based and axiomatic models for Intel-x86 persistency and proved their
equivalence. We next do the same for Armv8. As Intel-x86 and Armv8 persistency are highly similar, we focus on
their differences (§2.6.1; see §A.2 for the full details). We then present the view-based Armv8 persistency model
(§2.6.2), fix and simplify the axiomatic model for Armv8 persistency due to [Raad et al. 2019a] as discussed in
§2.2.2 (§2.6.3), and finally prove the equivalence of our view-based and axiomatic models (§2.6.4).
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. . . (the language for Intel-x86 in Fig. 2.3)

s ∈ Stmt ::= · · · statement

| r := loadxcl,rk [e] load

| rsucc := storexcl,wk [e1 ] e2 store

| isb | dmb.f | dsb.f fence

| flushopt e flush

f ∈ F ::= ld | st | sy order

xcl ∈ B ::= false | true exclusivity

rk ∈ RK ::= pln | wacq | acq read kind

wk ∈ WK ::= pln | wrel | rel write kind

Figure 2.9: The Armv8 concurrency/persistency language.

2.6.1 Armv8 versus Intel-x86 Persistency

We present the Armv8 language in Fig. 2.9, which is similar to that for Intel-x86 (Fig. 2.3), modulo the
following:

Ordering: Armv8 ordering constraints are weaker and more elaborate than those of Intel-x86. Specifically,
Armv8 loads and stores are annotated with access ordering constraints (rk or wk in Fig. 2.9). Moreover, Armv8
fences are more diverse: isb orders loads and later dependent accesses; dmb.f orders accesses according
to the ordering constraint f (see Fig. 2.9); and dsb.sy additionally awaits the completion of pending flush
instructions.

Exclusivity: Unlike Intel-x86, Armv8 supports exclusive load-link and store-conditional instructions [Jensen
et al. 1987] that (if successful) prohibit intervening stores between the load and store. Exclusive instructions
are more primitive than RMWs: RMWs can be implemented via exclusive instructions but not vice versa.14

As such, loads and stores are annotated with exclusivity tags (xcl in Fig. 2.9).

Flush: All Armv8 flushes are asynchronous (flushopt).

As we describe shortly, these differences are largely orthogonal to modeling persistency, except for the
relaxed ordering of writes. Specifically, Armv8 allows (unlike Intel-x86) speculative execution of writes, interacting
with PM in an interesting way. To see this, we review the relaxed ‘load buffering’ behavior of Armv8 due to
speculative writes:

(a) r1 := Y // = 1 (c) r2 := X // = 1

(b) X := 1 (d) Y := 1
(LB)

As Armv8 does not order a read and a subsequent write, (a) and (b) may be reordered; similarly for (c) and
(d). As such, Armv8 allows an execution where (b), (d), (a), and (c) are executed in order, thus allowing the
r1 = r2 = 1 behavior.

14While Armv8.1 also supports RMWs, they are currently missing in Armv8view and Armv8axiom [Pulte et al. 2019]. Accordingly, we do not
extend them to support RMWs as this is orthogonal to our objectives here.
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2.6.2 PArmv8view: View-Based Armv8 Persistency

As with Px86view, the view-based Armv8 persistency model, PArmv8view, follows the same interleaving model
over the history of stores. However, PArmv8view differs from Px86view in that (1) its views are more elaborate; and
(2) it introduces promises to model speculative writes.

Views To model the ordering constraints and exclusivity of Armv8, the PArmv8view thread state in Fig. A.5
has additional view components compared to x86view in Fig. 2.4. These additional components are those of
Armv8view [Pulte et al. 2019]; i.e. the PArmv8view thread state is that of Armv8view extended with persistency
views (vpReady, vpAsync and vpCommit in §2.3.5).

Promises The additional views, however, are not sufficient to model LB: without further instrumentation, the
model remains interleaving, where either (a) or (c) is executed first, reading the initial value 0.

To model speculative writes, Armv8view [Pulte et al. 2019] introduces the notion of a promise: a message that
may be speculatively added to the memory (or promised) without executing a store, provided that the promised
message is later substantiated (or fulfilled) by executing a corresponding store. Put formally, a thread state ts
contains the set ts.prom of the message ids that are promised by the thread but not yet fulfilled.

Using promises, we can model the LB behavior as follows, where tid1 and tid2 denote the left and
right threads, respectively: (b-prom) tid1 promises ⟨X := 1⟩tid1

@1 with ts1.prom = {@1}; (c) tid2 reads
⟨X := 1⟩tid1

@1, updating ts2.coh[X] and ts2.vrOld (‘old-read view’15) to @1; (d) tid2 writes ⟨Y := 1⟩tid2
@2, up-

dating ts2.coh[Y] and ts2.vwOld (‘old-write view’) to @2; (a) tid1 reads ⟨Y := 1⟩tid2@2, updating ts1.coh[Y] and
ts1.vrOld to @2; and (b-fulfill) tid1 fulfills ⟨X := 1⟩tid1@1, yielding ts1.prom=∅ and ts1.vwOld=@1. Effectively,
the write (b) is speculatively executed before the read (a) is executed.

To ensure that all speculations are substantiated, we require that a thread state’s prom set be empty at the
end of an execution; otherwise, the execution is deemed invalid.

Promises and Persistency The promises in PArmv8view similarly model speculative writes. Indeed, promises
are largely orthogonal to persistency, except in the case of a crash. Specifically, in case of a crash in the presence
of unfulfilled promises, we must determine the PM contents.

On the one hand, one may argue that unfulfilled promises should persist (remain in PM) as they have
been made visible to other threads. To see this, consider Commit2 and suppose that the left thread promises
⟨Data := 42⟩@1 which is yet unfulfilled, the right thread reads ⟨Data := 42⟩@1 and writes ⟨Commit := 1⟩@2,
and then a crash occurs. If upon recovery ⟨Commit := 1⟩@2 has persisted, then ⟨Data := 42⟩@1 (which is an
unfulfilled promise) should have also persisted.

On the other hand, one may argue that unfulfilled promises should not persist as they are not substantiated
by a store. For example, suppose that the left thread in Commit2 promises to write ⟨Data := 23⟩@1 without
fulfilling it, and then it crashes. The promised write then should not persist as it is unsubstantiated; i.e. otherwise
23 appears out-of-thin-air.

To resolve this dilemma, we allow an execution to crash only if it has no unfulfilled promises. This then admits
only the desired behaviors in Commit2: the execution cannot crash if either ⟨Data := 42⟩@1 or ⟨Data := 23⟩@1

is promised and not yet fulfilled. At first glance, this may seem restrictive as micro-architecturally an execution
may crash even in the presence of uncommitted speculative writes. However, when this is the case, executing the
remaining instructions to commit speculative writes does not constrain the PM contents. Moreover, we formally
justify our design by proving that PArmv8view and PArmv8axiom are equivalent (see §2.6.4).

15While reads update vrNew in x86view, they update vrOld in Armv8view. We refer the reader to §A.2 for more details.
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(axioms of Armv8axiom [Pulte et al. 2019] Fig. A.10)

fob = [W ∪R]; po; [dmb.sy ∪ dsb.sy]; po; [FO]

∪ [W ∪R]; (po ∩ CL); [FO]

ob = obs ∪ dob ∪ aob ∪ bob ∪ fob ∪ pf ∪ fp (redefined)

pf ⊆ (obs ∪ dob ∪ aob ∪ bob ∪ fob ∪ fp)+ (pf-min)

P = dom(pf; [FO]; po; [dsb.sy])

∀l. ∃w. SM(l) = wval(w) ∧ (P × {w}) ∩ Loc ⊆ co? (persist)(persist)

Figure 2.10: The PArmv8axiom model.

2.6.3 PArmv8axiom: Fixing and Simplifying PArmv8

We use the model of Pulte et al. [2019] as the baseline axiomatic model for Armv8 concurrency, presented
as Armv8axiom in [Pulte et al. 2019, Appendix D].16 The Armv8axiom model is equivalent to the authoritative
axiomatic model in [Pulte et al. 2017] which is reviewed by Arm engineers. Note that Armv8axiom has the same
style as x86axiom in Fig. 2.7, except that: (1) all coherence constraints are captured by a single axiom (internal)
since (co-ww) and (co-rr) no longer follow from the other axioms;17 (2) the ob component of Armv8axiom is
more elaborate, modeling the weak ordering constraints of Armv8; and (3) Armv8axiom has an additional axiom
(atomic) that ensures the exclusivity of load-link/store-conditional instructions.

We next define an axiomatic model for Armv8 persistency, PArmv8axiom in Fig. 2.10, by extending Armv8axiom
with persistency in the same style as Px86axiom. The key differences from Px86axiom are that: (1) flush instructions
impose different ordering constraints; (2) PArmv8axiom has no strong flush instructions; and (3) optimized flush
instructions are guaranteed to commit only upon executing dsb.sy fences.

The pf-min axiom is optional as in Px86axiom (Theorem 2.4.2).

Fix Our PArmv8axiom model fixes the PArmv8 problem discussed in §2.2.2. Put formally, we prove the equivalence
of PArmv8axiom and SPArmv8 which denotes strengthening PArmv8 by extending ob with pf and fp.

Theorem 2.6.1. A behavior is allowed under SPArmv8 iff it is allowed under PArmv8axiom.

Proof. The proof is given in §A.5.

2.6.4 Equivalence of PArmv8view and PArmv8axiom

Finally, we prove that PArmv8axiom and PArmv8view are equivalent by generalizing the analogous concurrency
result in [Pulte et al. 2019, Theorem 6.1] (showing that Armv8axiom and Armv8view are equivalent) and extending
it with persistency.

Theorem 2.6.2. A behavior is allowed under PArmv8axiom iff it is allowed under PArmv8view.

Proof. The proof is mechanized in [Cho et al. 2021a].
16We refactor the relations in [Pulte et al. 2019] to replace dmb with dmb ∪ dsb. The latter is a straightforward extension as dsb is strictly

stronger than dmb [Arm 2020].
17We could replace internal with irreflexivity of po; (co ∪ rf ∪ fr ∪ fr; rf) for uniformity with x86axiom. We forwent this to use

Armv8axiom [Pulte et al. 2019] as is.
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2.7 Model Checking Persistency Patterns

We develop a stateless model checker for PArmv8view by generalizing and extending the Armv8view model
checking framework in [Pulte et al. 2019] to support persistency and account for crashes (§2.7.1). We use our
model checker to verify representative persistent synchronization examples, including the AtomicPersists
example [Raad et al. 2020] that emulates a persistent transaction §A.6. Our model checking tool and verified
examples are open source and publicly available [Cho et al. 2021a].

2.7.1 Model Checking Tool

Model Checking Tool for Armv8view We first briefly review the baseline model checking tool for
Armv8view [Pulte et al. 2019], which is a part of RMEM [Armstrong et al. 2019]. The tool consists of two
parts: the executable model for sequential semantics of Armv8 ISA written in Sail [Armstrong et al. 2019]; and
the executable memory model for concurrency written in Lem [Mulligan et al. 2014]. The former is adopted from
[Pulte et al. 2017], and the latter is split into two modes: the “promise-mode” which approximately enumerates
the reachable final memories; and the “non-promise-mode” that checks if each potentially reachable final memory
is actually reachable by thread executions to the end without promises. The two-mode execution is sound for the
Armv8view model: a reachable state in Armv8view is also reachable by first promising to write all messages and
then fulfilling the promises by executing the threads [Pulte et al. 2019, Theorem 7.1].

Extension for PArmv8view We extend the model checking tool for Armv8view as follows: (1) we add persistency
instructions to the executable model for sequential semantics in Sail; (2) we add persistency views to the executable
memory model for Armv8view in Lem; (3) we enumerate not only final but also intermediate reachable memories
in the promise-mode; and (4) we allow each thread’s execution to stop amidst the non-promise-mode; and (5) we
enumerate all post-crash states from the reachable states of intermediate memories and persistency views.

The performance of the resulting model checking algorithm for PArmv8view is similar to that for Armv8view
because (1), (2), (4), (5) introduce only a constant-factor overhead; and the number of intermediate memories in
(3) is usually dominated by that of final memories.

2.8 Discussion

2.8.1 Related Work and Impact

Hardware Persistency Models Existing literature includes several works on formalising and testing hardware
persistency models [Pelley et al. 2014; Raad et al. 2019b,a; Joshi et al. 2015; Condit et al. 2009; Liu et al. 2019;
Khyzha and Lahav 2021]. As discussed in detail in §2.2–2.6, the works of Raad et al. [2019b,a] are closest to ours.
Pelley et al. [2014] propose several persistency models including epoch persistency; however, these models have
not been adopted by mainstream architectures as of yet. Joshi et al. [2015]; Condit et al. [2009] describe epoch
persistency under x86-TSO [Sewell et al. 2010]. Liu et al. [2019] develop the PMTest testing framework for finding
persistency bugs in software running over hardware models. Izraelevitz et al. [2016a] give a formal semantics of
epoch persistency under release consistency [Gharachorloo et al. 1990]. As discussed in §2.1, the PTSO model of
Raad and Vafeiadis [2018] formalises epoch persistency under x86man (TSO) as a proposal for Intel-x86. However,
PTSO is rather different from the existing Intel-x86 persistency model in [Intel 2024a] in that it does not support
the fine-grained Intel primitives for selectively persisting cache lines (flush and flushopt), and instead proposes
coarse-grained instructions (for persisting all locations at once) that do not exist in Intel-x86.
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Khyzha and Lahav [2021] recently developed the PTSOsyn model for Intel-x86 that satisfies the three
properties of (A)–(C) discussed in §2.1. In particular, PTSOsyn supports persistent synchronization patterns even
in the presence of I/O (B) as it also models flush instructions synchronously like Px86view (§2.3.5). However, this
problem of asynchronous modeling of flush regarding I/O is not discussed in the paper.

Intel recently introduced Optane Persistent Memory 200 Series [Intel 2024c] that feature Enhanced Asyn-
chronous DRAMRefresh (eADR), which treats processor caches as persistent (rather than volatile) by automatically
flushing cache data to PM in case of a crash. When eADR is available, a store is guaranteed to persist when made
visible to other threads (e.g. after executing an mfence/sfence, but not clflush/clflushopt). Nevertheless,
we believe that our contributions still stand for the following reasons. First, to ensure backwards compatibility,
programs must support persistency in the absence of eADR. That is, a correct PM program must defensively check
whether eADR is enabled, and if not insert appropriate clflush or clflushopt instructions per our models.
Second, eADR may increase runtime cost. For example, to flush cache data to PM when a crash occurs, eADR
must drain more power with higher voltage level or larger capacity, the impact of which on power consumption
has not been thoroughly analyzed as of yet. The increased power consumption may affect embedded systems
worse, and to our knowledge, Arm currently has no plans for supporting an eADR-like feature in Armv8.

Software Persistency Models The literature on software persistency is more limited [Chakrabarti et al. 2014;
Kolli et al. 2017; Gogte et al. 2018]. Kolli et al. [2017] propose acquire-release persistency, an analogue to release-
acquire consistency in C/C++. Gogte et al. [2018] propose synchronisation-free regions (regions delimited by
synchronisation operations or system calls). Although both approaches enjoy good performance, their semantic
models are rather fine-grained, paving the way towards more coarse-grained transactional models [Intel 2024d;
Kolli et al. 2016; Tavakkol et al. 2018; Shu et al. 2018; Avni et al. 2015; Raad et al. 2019a].

Verification There are several works on implementing and verifying algorithms that operate on PM. Friedman
et al. [2018] developed persistent queue implementations using Intel-x86 persist instructions (e.g. flush). Similarly,
Zuriel et al. [2019] developed persistent set implementations using Intel-x86 persist instructions. Derrick et al.
[2019] provided a formal correctness proof of the implementation in [Zuriel et al. 2019]. All three of [Derrick
et al. 2019; Zuriel et al. 2019; Friedman et al. 2018] assume that the underlying concurrency model is sequential
consistency [Lamport 1979], rather than x86man (TSO). Raad et al. [2020] developed a persistent program logic
for verifying programs under the Px86 model. Kokologiannakis et al. [2021] formalised the consistency and
persistency semantics of the Linux ext4 filesystem, and developed a model-checking algorithm and tool for
verifying the consistency and persistency behaviors of ext4 applications such as text editors

Our work had concrete impacts on (1) a view-based program logic, Pierogi, for Owicki-Gries reasoning about
Intel-x86 persistency [Bila et al. 2022]; and (2) a view-based concurrent separation logic, Spirea, for verifying
programs under a weak persistent memory model [Vindum and Birkedal 2023]. Both approaches build upon the
notion of persistency view introduced in this work for reasoning about persistent programs.

2.8.2 Future Work

We plan to build on this work in several ways. First, we will empirically validate the proposed models w.r.t.
PM hardware using custom SoC (ASIC or FPGA) that captures the traffic between CPU and PM, as proposed
also in [Raad et al. 2019b]. Second, we will explore language-level persistency by researching persistency
extensions of high-level languages such as C/C++. This will liberate programmers from understanding hardware-
specific persistency guarantees and make persistent programming more accessible. Third, we will first specify
existing persistent libraries such as PMDK [Intel 2024d] and then use our model checker (§2.7) to verify their

25



implementations against our specifications. Lastly, in the spirit of persistency semantics defining the order in
which writes are propagated to PM in DIMM slots, we will study the semantics in the presence of accelerators
(e.g. CXL [Consortium 2024b] and CCIX [Consortium 2024a]), defining the order in which writes are propagated
to accelerators in PCIe slots or other peripheral interconnects.
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Chapter 3. A General Programming Model

3.1 Introduction

A key building block in PM for such optimizations are concurrent data structures that ensure that the
underlying DS is both thread-safe (i.e. it behaves correctly when accessed by concurrent threads racing to
manipulate the DS) and crash-consistent (i.e. it is restored into a consistent state upon recovery from a crash,
e.g. a power failure). The thread-safety of the underlying DS is ensured by using a suitable concurrency control
mechanism, e.g. transactional memory (TM), locking, or lock-free techniques using fine-grained synchronization
primitives (e.g. CAS instructions). Compared to TM- or locking-based DS implementations, lock-free data
structures have the following two advantages. (1) They have a greater potential to parallelize workloads than
others by distributing memory accesses across a multitude of contention points [David et al. 2018]. For instance,
logging imposes significant overhead both in time (due to the concentrated contention point at the tip) and in
space (because all intermediate changes are recorded). As such, lock-free queues and hash tables [Fatourou and
Kallimanis 2012, 2011; Hendler et al. 2010; Goodman et al. 1989] outperform lock- and TM-based ones in PM.
(2) Lock-free algorithms ensure that the DS is in a consistent state at all times, thereby eliminating the need
for additional mechanisms to ensure crash consistency, so long as the updates on the DS are flushed to PM in a
timely manner.

As such, persistent lock-free DSs have drawn significant attention in the literature, including persistent
lock-free stacks [Attiya et al. 2019], queues [Friedman et al. 2018], lists [Attiya et al. 2022; Zuriel et al. 2019],
hash tables [Chen et al. 2020; Zuriel et al. 2019; Nam et al. 2019], and trees [Attiya et al. 2022], as well as general
techniques for transforming volatile (in-DRAM) lock-free DSs to persistent (in-PM) DSs [Lee et al. 2019; Friedman
et al. 2020, 2021; Izraelevitz et al. 2016b].

One of the most widely accepted correctness criteria for persistent lock-free DSs (and concurrent DSs in
general) is durable linearizability (DL) [Izraelevitz et al. 2016b]. A multi-threaded execution (where the operations
of concurrent threads can arbitrarily interleave) is linearizable if each operation appears to execute and take
effect atomically (without being interleaved by operations in other threads) at some point, called the linearization
point, between its invocation and response [Herlihy and Wing 1990]. DL is an extension of linearizability to the
PM setting and additionally offers crash consistency guarantees. Specifically, a multi-threaded execution that
possibly spans multiple crashes satisfies DL if it is linearizable when ignoring the crash events. In particular,
operations completed before a crash should be persisted across the crash, and if there are operations whose
executions are interrupted by the crash, then the DS should be recovered to a consistent state after the crash.
DL is indeed satisfied by most existing persistent concurrent DSs, except for those DSs that intentionally trade
durability for performance [Friedman et al. 2018].

However, DL is insufficient for composing persistent DSs with one another [Friedman et al. 2018]. For
instance, consider a banking DS comprising a savings account, S, and a current account, C, where amount a is
withdrawn from S and, if successful, deposited into C:

1: succ := Withdraw(S, a); if succ then Deposit(C, a);

Even if both DSs underlying C and S each individually satisfy DL, the whole banking DS does not: the amount a
withdrawn from S can be lost if a crash occurs before it is deposited into C. What is needed for the correctness of
this composition is the stronger detectable recoverability (or detectability in short) [Friedman et al. 2018]. Under
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detectability, after a crash a user can (1) detect if an operation was not invoked, interrupted by the crash, or
completed before the crash; (2) resume the execution of an interrupted operation; and (3) retrieve the correct
output for completed operations. If S and C were detectable, then one could detect the value withdrawn from S
and whether it was deposited into C in case of a crash, and resume the interrupted operation.

Note that existing persistent TM (PTM) systems such as those of Memaripour et al. [2017]; Krishnan et al.
[2020] provide such detectability guarantees. Specifically, code wrapped within a persistent transaction t is
executed both atomically (i.e. it is thread-safe) and failure-atomically (i.e. either all or none of the effects of t
take place in case of a crash, and thus t is detectable). Nevertheless, PTM systems have two limitations that
make them unsuitable for implementing persistent concurrent DSs. First, the code wrapped within a PTM (or
TM for that matter) is typically required to comprise simple memory read and write operations, rather than
arbitrary operations associated with DSs. Second, even if one could enclose arbitrary DS operations within a PTM
transaction, combining PTM and a concurrent DS is not straightforward: a PTM (as with TM) system provides its
own concurrency control mechanism (e.g. via locking), clashing with and defeating the purpose of the already in
place concurrency control mechanism of a concurrent DS. As such, PTM systems are not immediately suitable
for implementing detectable concurrent DSs in PM.

Challenges Our aim here is to devise a technique for implementing detectable concurrent DSs in PM in such
a way that is both generally applicable (i.e. it can be applied to implement an arbitrary DS rather than tailored
towards a specific DS, e.g. a queue) and highly performant.

This, however, is far from straightforward. Specifically, as we discuss below, although several detectable
concurrent DSs have been proposed in the literature [Friedman et al. 2018; Li and Golab 2021; Rusanovsky et al.
2021; Attiya et al. 2018; Ben-David et al. 2019; Attiya et al. 2022], to the best of our knowledge, each is either
limited to simple algorithms or suffers from high runtime overhead.

• General Applicability: Many of the existing detectable concurrent DSs are hand-tuned and manually reason
about crash consistency and detectability. Friedman et al. [2018]; Li and Golab [2021] present detectable
lock-free queues. Rusanovsky et al. [2021]; Fatourou et al. [2022] present a general combiner to construct
persistent combining DSs, but it can recover only the last invocation of each operation. As such, in an
execution of the banking example where S is withdrawn two times before a crash, we cannot distinguish
whether the crash happened during the first or the second invocation of Withdraw. Attiya et al. [2018]
present a detectable compare-and-swap (CAS) operation on PM locations as a general primitive operation for
pointer-based DSs. However, the applicability of their CAS to concurrent DSs has not been established. Attiya
et al. [2022] present a transformation from concurrent DSs in DRAM into those in PM with detectability,
but this requires the operations to be strictly splittable into two phases: load-only gather and CAS-only
update. Such a requirement is satisfied by data structures such as linked-lists [Harris 2001], but not by more
sophisticated ones such as the Michael-Scott queue [Michael and Scott 1996] or hash tables [Shalev and
Shavit 2006; Chen et al. 2020] that perform loads and CASes in an interleaved manner. Ben-David et al. [2019]
present a more general transformation, but theirs requires the operations to follow specific patterns such
as the normalized form [Timnat and Petrank 2014] for efficient transformation and makes a simplifying
assumption that is not satisfied by real-world systems (see §3.7).

• High Performance: While the overhead of detectability is modest or negligible for hand-tuned DSs [Friedman
et al. 2018; Li and Golab 2021; Rusanovsky et al. 2021; Attiya et al. 2022], it is significant for the transformation
of Ben-David et al. [2019] for two reasons. First, an object supporting a detectable CAS consumes O(T ) space
in PM where T is the number of threads, prohibiting its use for space-efficient DSs such as hash tables and
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trees. More significantly, the detectable CAS object of Attiya et al. [2018] consumes O(T 2) space in PM.
Second, the transformed program writes and flushes to PM rather frequently (see §3.7 for details).

Contributions and Outline To address the above challenges, we presentMemento: the first general program-
ming framework for high-performance, detectable, concurrent DSs in PM.1 To this end, we generalize Ramalingam
and Vaswani [2013]’s type system that statically ensures the detectable recovery of programs in a simple core
language. In contrast to the prior work, Memento’s type system additionally supports control constructs such as
conditionals, loops, and function calls for general programming, and the CAS primitive operation for concurrent
programming in PM. Our type system ensures programs to be deterministically replayed after a crash so that
well-typed programs are detectably recoverable when simply re-executed from the beginning after a crash. As such,
our type system substantially reduces the complexity of designing detectable DS in PM to that of designing volatile
DS. Unlike most hand-tuned persistent DSs that require challenging-to-develop and reason-about DS-specific
recovery code, our framework solely requires a program to conform to our type system, thereby eliminating the
need for DS-specific recovery code! As example, we adapt several volatile concurrent DSs to well-typed programs
and automatically derive detectable concurrent DSs. Specifically, we make the following contributions:

• In §3.2, we describe how to design programs that are deterministically replayed after a crash. We do so using
two primitive operations, detectable checkpoint and CAS, by composing them with usual control constructs
such as sequential composition, conditionals, and loops.

• In §3.3, we design a core language for persistent programming and its associated type system for deterministic
replay, and prove that well-typed programs are detectably recoverable.

• In §3.4, we present an implementation of our core language in the Intel-x86 Optane DCPMM architecture.
Our construction is not tightly coupled with Intel-x86 so that it can be adapted to other PM architectures like
Samsung’s CMM-H in a straightforward manner.

• In §3.5, we adapt several volatile, concurrent DSs to satisfy our type system, automatically deriving detectable
concurrent DSs in PM. These include a lock-free linked-list [Harris 2001], Treiber stack [Treiber 1986],
Michael-Scott queue [Michael and Scott 1996], a combining queue, and Clevel hash table [Chen et al. 2020].
In doing so, we capture the optimizations of hand-tuned persistent concurrent DSs with additional primitives
and type derivation rules (§B.1 and §B.2), and support safe memory reclamation even in the presence of
crashes.

• In §3.6, we evaluate the detectability and performance of our CAS and automatically derived concurrent DSs
in PM. They successfully recover from random thread and system crashes in stress tests, respectively (§3.6.1);
and perform comparably with the existing hand-tuned persistent DSs with and without detectability (§3.6.2).

In §3.7, we conclude with related and future work. Our implementation and experimental results are open-sourced
and available as supplementary material [Cho et al. 2023a].

3.2 Designing Detectable Programs with Deterministic Replay

Memento achieves detectability by deterministically replaying programs after a crash. Before presenting
our type system that statically ensures deterministic replay of programs in §3.3, we first describe our key idea,

1We use the word “concurrent” to emphasize Memento’s general applicability, but the framework applies not only to lock-free or
lock-based concurrent CSs but also to sequential DSs.
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Algorithm 1 Transfer from a savings account to a current account with mementos
1: function Transfer(savings, current, amount,mid) ▷ mid: memento id
2: let succ := Withdraw(savings, amount,mid.withdraw);

3: if succ then Deposit(current, amount,mid.desposit)

4: end function

which is recording the progress and result of a program using a memento, a thread-private log stored in PM
(hence the framework name), in a compositional manner.

3.2.1 Ensuring Deterministic Replay of Composed Operations

Composition Consider the Transfer function of our banking example (§3.1) shown in Algorithm 1: it attempts
to withdraw amount from savings (L2), and if successful, it deposits the same amount into current (L3). The
code without highlighted parts is correct on volatile memory but not recoverable on PM in case of crashes. To
ensure deterministic replay of Transfer, it suffices to ensure those of its sub-operationsWithdraw and Deposit
using sub-mementos mid.withdraw and mid.deposit, respectively. Regardless of whether the execution of a
function f is finished or interrupted at crash time, thanks to its memento the post-crash re-execution of f will
return the same result or resume from the interrupted program point, respectively. For instance, if the pre-crash
execution crashes at L2, the post-crash re-execution resumesWithdraw thanks to its deterministic replay. On
the other hand, if the pre-crash execution crashes during Deposit at L3, the post-crash re-execution produces the
same result succ fromWithdraw, takes the same branch, and resumes Deposit. In general, the deterministic
replay property is preserved by sequential composition and conditionals.

Checkpoint Primitive As a general-purpose primitive operation, our framework provides a detectable check-
point operation that records the result of a read-only expression:

1: v := chkpt(λ.e,mid) ▷ e: read-only

Here, e is a read-only expression whose result may change across crashes due to, e.g. concurrent modifications to
PM. The checkpoint operation first checks if a value is recorded in the mementomid, and if so it returns its value;
otherwise, it executes e, records its result in the memento mid and returns the result. The checkpoint operation
is detectable: even though it may partially execute e multiple times across crashes (hence the requirement for
e to be read-only), it produces a unique result that is recorded in the memento across crashes and assigns this
unique result to v.

A PM allocation is considered read-only as its effect is thread-local and becomes visible to other threads
only after the address is published to shared memory. It is safe to leak PM allocations during crashes, as the
underlying memory allocator is assumed to trace garbage after a crash.

Checkpoint operation is already proposed in prior work [Ben-David et al. 2019], but we generalize their
implementation with timestamps (see §3.2.2 for details). We will present our design in §3.4.2.

Compare-and-Swap Primitive As another general-purpose primitive operation for concurrent programming,
our framework provides a detectable, persistent compare-and-swap (CAS) operation:2

1: r := pcas(loc, vold, vnew,mid)

This operation compares the current value of loc against vold, and if the values match it updates it to vnew;
otherwise the value of loc is unchanged. The return value r ∈ B × Val is a pair comprising a boolean flag

2Here we omit memory orderings [McKenney 2005]—e.g. release or acquire—but we annotate the most efficient and yet correct orderings
in our implementation.
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Algorithm 2 Insertion on the Harris concurrent sorted linked-list
1: function Insert(head, val,mid)
2: loop

3: let (prev, next, blk) := chkpt(λ.epnb,mid.pnb); ▷ timestamp: 30 | 80
4: let succ := pcas(prev.next, next, blk,mid.cas); ▷ timestamp: 20 | 90
5: if succ then return

6: end loop

7: end function

epnb
△
= (p, n) := Find(head, val); b := palloc(⟨val : val; next :n⟩); return (p, n, b)

reflecting whether the update was successful, and the original value held in loc. The operation guarantees that the
result r is deterministic so long as the arguments are also deterministic. In particular, if a pcas were unsuccessful
before a crash, its failure would be recorded in its mementomid and thus the post-crash execution would also fail
by inspecting mid.

Note that deterministic replay cannot be achieved using plain CAS operations: in case of a crash, one loses
such information as whether the plain CAS was performed, and if it was successful or not. The pcas requires
additional synchronization in PM. Recognizing its general applicability, Attiya et al. [2018]; Ben-David et al. [2019]
have proposed alternative implementations, but they consume O(T 2) and O(T ) PM space for each location,
respectively, where T is the number of threads. By contrast, our implementation (§3.4.3) uses only 8 PM bytes for
each location.

3.2.2 Supporting Simple Loops with Timestamps

The banking example uses a unique sub-memento for each sub-operation, making it easier to ensure a
deterministic replay of composed operations. While feasible for simple programs, the unique memento assumption
does not apply to complex programs with loops as the sub-mementos are reused across different loop iterations.
To support loops, our framework employs timestamps.

Example: Concurrent Linked-List Consider the Insert operation on the concurrent sorted linked-list by
Harris [2001] in Algorithm 2. For brevity, we omit the implementation of the function Find(head, val) (traversing
the list from head to find val) and the deallocation of non-inserted blocks (see §3.5.1 for the implementation). As
before, the code without highlighted parts is correct for volatile memory: it searches for adjacent blocks, prev
and next, between which val is inserted while preserving the sorted order and allocates a new block, blk, that
contains val and points to next (L3); performs a CAS on prev.next from next to blk (L4); and keeps trying until
successful (L5).

Challenge: Reused Memento Adding the highlighted parts (replacing cas with pcas at L4), programmers
can ensure the deterministic replay of the loop body. However, it is insufficient to correctly recover from crashes
after loop iterations as they reuse mementos. Consider an execution that crashes right after L3 in the second loop
iteration. After the crash, mid.pnb contains the result of epnb in the second iteration, while mid.cas contains the
result of the CAS in the first iteration. As such, it is necessary to distinguish the results of sub-operations from
different iterations for correct recovery; otherwise, a post-crash execution would mix the sub-operation results.

To address the challenge of loops and more generally of complex control flow, the prior work performs
additional writes and following flushes to PM to record the operation progress. Specifically, Attiya et al. [2018];
Li and Golab [2021] additionally reset memento-like “operation descriptors” by writing sentinel values to PM;
and Ben-David et al. [2019] further checkpoint the program counter in PM. However, these additional writes and
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Algorithm 3 Resizing the Clevel hash table [Chen et al. 2020] (simplified)
1: function ResizeMoveArray(from, to,mid)
2: loop

3: let i := chkpt(λ.ϕ(0, i+ 1),mid.i); ▷ timestamp: 30 | 80
4: if i ≥ |from| then return

5: ResizeMoveEntry(from, i, to,mid.entry) ▷ timestamp: 20 | 90
6: end loop

7: end function

flushes to PM incur a significant performance overhead for high-contention workloads with heavy use of loops
(see §3.6 for details).

Solution: Timestamp To distinguish between the sub-operation results of different iterations efficiently
(and record the operation progress more generally), our framework uses timestamps. A timestamp is a counter
that increases monotonically during executions and across crashes.3 Specifically, each primitive detectable sub-
operation additionally records in its sub-memento the timestamp at which it completes. In the above scenario, the
sub-operations may record timestamps of 10 and 20 inmid.pnb andmid.cas in the first loop iteration, respectively,
and then overwrite the timestamp of 30 in mid.pnb in the next iteration.

In the post-crash execution, our framework first observes that timestamp 30 in mid.pnb and then 20 in
mid.cas, which is not monotonically increasing with the control flow. That is, the checkpoint at L3 was performed
in the last iteration before the crash, but the pcas at L4 was not. As such, the post-crash execution may resume
at L4 and re-execute pcas.

Regardless of the program point at which the execution crashes, the post-crash execution can deterministically
replay the last iteration before the crash. Suppose the timestamps recorded inmid.pnb andmid.caswere 80 and 90,
respectively. Then the post-crash execution replays the last iteration by observing the monotonically increasing
timestamps (80 at L3 and 90 at L4) and retrieves the recorded results. Thereafter, it will either successfully return
or try again (L5).

Unlike prior approaches [Attiya et al. 2018; Ben-David et al. 2019], our approach does not incur additional
writes and flushes to PM.4 On the one hand, our primitive operations, checkpoint and CAS, record an operation’s
timestamp and result atomically at once. On the other hand, our framework does not require additional writes
and flushes for loops and other control constructs.

3.2.3 Supporting Loop-Carried Dependence by Checkpointing Dependent Variables

In the presence of loop-carried dependence, timestamps alone do not guarantee deterministic replay because
dependent variable values may be lost in case of a crash. As such, our framework further requires programmers
to checkpoint the dependent variables for each iteration.

Example: Clevel Hash Table Consider the ResizeMoveArray operation on the Clevel hash table [Chen
et al. 2020] presented in Algorithm 3. When resizing the hash table, every entry in the array of an old level,
from , is moved to the array of a new level, to. To do this, the operation iterates over from (L3) and invokes
the sub-operation ResizeMoveEntry for each entry index i (for brevity we omit ResizeMoveEntry). To reveal
loop-carried dependence explicitly, we represent the code in the Static Single Assignment (SSA) form [Cytron

3Intel-x86 does not natively support such a timestamp with strong properties, but we develop such a counter in §3.4.2.
4Since our approach reduces the number of writes as well as that of flushes, it has performance advantages over the prior approaches in a

wide range of PM platforms including Intel eADR [Intel 2021].
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et al. 1989, 1991].5 In the SSA form, loop-dependent variables are defined as a ϕ-node at the beginning of the
loop. A ϕ-node of the form v = ϕ(v0, v1) assign v0 (resp. v1) to v if it is the first (resp. a later) iteration. In our
example of Algorithm 3, i gets 0 in the first iteration and i+ 1 in the later iterations at L3.

Challenge: Dependent Variable With the highlighted part, especially invoking the sub-operation with an
additional memento argument mid.entry at L5, our framework ensures the deterministic replay of the loop body.
However, the loop-dependent variable i makes it challenging to correctly recover from crashes because the
framework needs to restore the value of i in the last iteration.

Solution: Checkpoint at the Loop Head To address the challenge above, our framework requires program-
mers to checkpoint dependent variables, e.g. i, at the loop head. In the post-crash execution, the checkpoint
operation retrieves the i value in the last iteration and, moreover, delimits the last iteration. For instance, suppose
that L3 and L5 record timestamps 30 and 20, respectively. Then the last iteration began at timestamp 30 and the
post-crash execution should re-execute L5. Similarly, if L3 and L5 respectively record timestamps 80 and 90, then
the last iteration began at timestamp 80 and the post-crash execution should retrieve the sub-operation result
recorded in mid.entry at L5.

In the presence of multiple dependent variables, our framework requires programmers to merge them all into
a single tuple or struct and checkpoint it at once. Otherwise, dependent variables of two consecutive iterations
can be mixed. For instance, suppose there were two dependent variables, x and y, and they were individually
checkpointed. If only x were checkpointed at the loop head and then the thread crashes, then the post-crash
execution retrieves the value of x from the last iteration and that of y from the previous iteration, violating the
recovery correctness.

3.3 Type System for Detectability

We next formalize the key idea presented in §3.2. We design a core language for PM (§3.3.1) and a type
system for deterministic replay (§3.3.2), and prove that typed programs are detectable (§3.3.3).

3.3.1 Core Language

We present the syntax and semantics of our core language for PM in Fig. 3.1. We discuss the implementation
of our language later in §3.4, and give its semantics in the technical appendix (§B.4).

A program, p, consists of a function environment, δ, and a list of statements, #   »stid, for each thread tid. An
assignment statement, r := e where r ∈ VReg is a register id and e ∈ Expr is a pure expression, evaluates e
to a value in Val ⊆ Expr and assigns it to r . An expression is either a constant, register, arithmetic/boolean
operation, tuple/union introduction/elimination, memento id, empty expression (ϵ) or concatenation (e.lab, see
below). A value is an irreducible expression without variables. A load statement, r := pload(e), evaluates e as a
PM location, l ∈ PLoc

△
= N, in the shared memory, loads the value of l and writes it to r . For simplicity, we

classify PM locations into shared and thread-local ones so that we can use the former as concurrent DS memory
blocks and the latter as mementos. An allocation, r := palloc(e), initializes a fresh PM location in the shared
memory with the value evaluated from e and writes the location to r .

A conditional statement, if (e) #»st
#»sf , reduces either to #»st or to #»sf depending on the value evaluated from e .

Loops reveal loop-carried dependence explicitly in the style of the SSA form (§3.2.3). Specifically, loop r e #»s

5The SSA form can represent a much more general class of control flow-dependent variables than loop-dependent variables [Cytron et al.
1989, 1991]. Although we present this example in SSA form, we do not require SSA in our implementation.
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p ::= [δ] #»s1 || . . . || #»sn program

s ∈ Stmt ::= r := e | r := pload(e) | r := palloc(e) assignment & PM

| if (e) #»st
#»sf | loop r e #»s | continue e | break control constructs

| r := f ( #»e ) | return e function call/return

| r := chkpt( #»s , emid) | r := pcas(eloc, eold, enew, emid) detectable op.

e ∈ Expr ::= () | z | b | mid | r | (e1 op e2) | e.i | (e1, e2) | inl e | inr e pure expr.

| match e { inl el ⇒ e ′
l , inr er ⇒ e ′

r} | ϵ | e.lab | . . .

v ∈ Val ::= () | z | b | mid | (v1, v2) | inl v | inr v value

z ∈ Z b ∈ B op ∈ Op r ∈ VReg
△
= N σ ∈ VRegMap

△
= VReg ⇀ Val

f ∈ FnId δ ∈ Env
△
= FnId ⇀ (

#         »
VReg × #       »

Stmt) l ∈ PLoc
△
= N lab ∈ Label mid ∈ #         »

Label

t ∈ Time
△
= N tid ∈ TId

△
= N mmts ∈ Mmts

△
=

#         »

Label → ⟨val :Val; time :Time⟩

c ∈ Cont ts ∈ TState
△
= ⟨regs : VRegMap; time :Time⟩ T ∈ Thread

△
=

#       »
Stmt× #       »

Cont× TState×Mmts

ev ∈ Event ::= R(l , v) | U(l , vold, vnew) tr ∈ #          »
Event mem ∈ Mem M ∈ Machine

△
=

#              »

Thread×Mem

#»s1,
#»c1, ts1,mmts1

tr−→δ
#»s2,

#»c2, ts2,mmts2 mem1
tr−→ mem2 M1

tr−→p M2

(machine-step)

T1[tid ] = ( #»s1,
#»c1, ts1,mmts1) T2 = T1[tid 7→ ( #»s2,

#»c2, ts2,mmts2)]
#»s1,

#»c1, ts1,mmts1
tr−→p.δ

#»s2,
#»c2, ts2,mmts2 mem1

tr−→ mem2

(T1,mem1)
tr|U−−→p (T2,mem2)

(machine-crash)

T1[tid ] = ( #»s1,
#»c1, ts1,mmts1)

T2 = T1[tid 7→ ( #        »p.stid , [], ts init,mmts1)]

(T1,mem)
[]−→p (T2,mem)

Figure 3.1: The syntax and semantics of our core PM language (excerpt).

(1) evaluates the initial value from e and assigns it to the dependent variable r ; (2) executes the body #»s ; (3) in
doing so, if continue e is executed, then the (merged) loop-carried dependent value evaluated from e is assigned
to r , and #»s is re-executed for the next iteration; and (4) if break is executed, the loop terminates. A function
call, r := f ( #»e ), evaluates the arguments #»e , finds the function id f in the program’s function environment δ with
δ(f ) = ( #        »prms, #»sf ) ∈

#         »

VReg × #       »

Stmt, and executes the function body #»sf with a fresh variable context assigning
the evaluated arguments to #        »prms . If return e is executed, then the control goes back to the caller and the return
value evaluated from e is assigned to r .

We treat primitive detectable operations as language constructs and implement them on Intel-x86 later in
§3.4. Primitive detectable operations comprise chkpt and pcas. A detectable checkpoint, r := chkpt( #»s , emid),
evaluates #»s as if it is a function body, but using the same variable context as the operation’s caller as a variable-
capturing closure. A detectable CAS, r := pcas(el, eo, en, emid), evaluates the expressions respectively to vl, vo,
and vn, attempts to update the PM location vl from vo to vn atomically, and writes whether it succeeded to r . For
both chkpt and pcas, their results and timestamps are checkpointed at the thread’s sub-memento (located in its
private PM) identified by the memento id (mid) evaluated from emid.

A thread consists of statements ( #»s ), loop and function continuations ( #»c , definition omitted), a volatile
state (ts), and a persistent memento (mmts). Continuations are pushed (resp. popped) for loop and call (resp.
break and return) statements, respectively. A thread state, ts , consists of a register file (ts.regs) and the thread’s
last observed timestamp (ts.time, see §3.2.2). To maintain its invariant, ts.time is initialized with zero at thread
initialization point (see machine-crash), and incremented when a primitive operation is executed or replayed.
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labs ∈ P(Label) FnType ::= RO | RW
∆ ∈ EnvType

△
= FnId → FnType

⊢ p

(program)

⊢ δ : ∆ ∆ ⊢labstid
#   »stid for each tid

⊢ [δ] #»s1 || . . . || #»sn

⊢ δ : ∆

(env-empty)

⊢ : []

(env-ro)

⊢ δ : ∆ ∆ ⊢RO
#»s

⊢ δ[f 7→ ( #        »prms, #»s )] : ∆[f 7→ RO]

(env-rw)

⊢ δ : ∆ ∆ ⊢labs
#»s

#            »prmsall =
#        »prms ++ {mid}

⊢ δ[f 7→ ( #            »prmsall,
#»s )] : ∆[f 7→ RW]

∆ ⊢labs
#»s

(empty)

∆ ⊢∅ []

(assign)

∆ ⊢∅ [r := e]

(cas)

∆ ⊢{lab} [r := pcas(el, eo, en,mid.lab)]

(chkpt)

∆ ⊢RO
#»s

∆ ⊢{lab} [r := chkpt( #»s ,mid.lab)]

(seq)

labs l ∩ labs r = ∅
∆ ⊢labs l

#»sl ∆ ⊢labsr
#»sr

∆ ⊢labs l⊎labsr
#»sl ++

#»sr

(if-then-else)

∆ ⊢labst
#»st ∆ ⊢labsf

#»sf

∆ ⊢labst∪labsf [if (e) #»st
#»sf ]

(loop-simple)

∆ ⊢labs
#»s

∆ ⊢labs [loop _ () #»s ]

(loop)

∆ ⊢labs
#»s lab /∈ labs

∆ ⊢{lab}⊎labs [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )]

(continue)

∆ ⊢∅ [continue e]

(break)

∆ ⊢∅ [break]

(call)

∆(f ) = RW

∆ ⊢{lab} [r := f ( #»e ++ {mid.lab})]

(return)

∆ ⊢∅ [return e]

Figure 3.2: Type system (excerpt).

When executing a primitive operation op, we compare ts.time with the timestamp tmmt checkpointed in the
memento of op. If ts.time < tmmt, then op was executed before the crash, and thus we simply update ts.time to
tmmt; otherwise, the replay is over and we execute op and update ts.time to a new timestamp. A memento is
a map from memento ids (lists of labels) to primitive mementos that record values and timestamps; e.g. the id
list.pnb denotes the primitive memento used at L3 in Algorithm 2. In our implementation, we statically reason
about the structure and size of the memento for each operation with types. Lastly, a machine,M , consists of a
list of threads (T ) and a memory (mem).

A judgement of the form #»s1,
#»c1, ts1,mmts1

tr−→δ
#»s2,

#»c2, ts2,mmts2 denotes a thread transition for environ-
ment δ, emitting a trace tr. A trace is a list of events; an event is either a read (R(l , v), reading v from shared PM
location l ) or an update (U(l , vold, vnew), atomically updating l from vold to vnew). For read events, the values
read from the shared memory are constrained not by thread transitions but by memory transitions of the form
mem1

tr−→mem2. Two transitions are combined into a machine transition of the form M1
tr−→p M2 for program p.

The machine-step rule states that a thread may execute a step tr, transitioning the memory with the same trace
tr, emitting only updates externally (tr|U); the machine-crash states that a thread may crash and re-execute
the initial statements with an empty continuation, initial thread state, and the preserved memento.

3.3.2 Type System

We present our type system for detectable operations with deterministic replay in Fig. 3.2. The program rule
states that a program is typed if its function environment and each thread’s statements are typed. A judgement of
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(a) Deterministic Replay (b) Removing Crashes with Deterministic Replay

Figure 3.3: Proving detectability by gradually removing crashes.

the form ⊢ δ : ∆ denotes that for each function id f , the function δ(f) is detectable with type ∆(f) ∈ FnType.
A function type is either RO, meaning the function only reads from shared PM locations and does not access
mementos at all; or RW, meaning the function reads and writes to shared PM locations and accesses only those
mementos prefixed by mid given as its last argument. The env-empty rule states that the empty function
environment is typed; env-ro adds a read-only function to the environment6; and env-rw adds a read-write
function with the last parameter being the memento idmid. The judgement∆ ⊢labs

#»s in the premise of env-rw
states that for any function environment (δ) with type∆, the execution of #»s satisfies the interpretation of RW
while using only those sub-mementos prefixed by mid.lab for some lab ∈ labs .

For read-write functions, empty states that the empty statement list is typed for any function environment
type (∆) using no mementos (∅); and assign, continue, break and return state that so are assignment,
continue, break, and return statements for all sub-expressions as they are pure.7 The seq composes lists of
statements so long as they use disjoint mementos (labs l∩ labs r=∅) and sequential composition uses their disjoint
union (labs l ⊎ labs r). The if-then-else composes a conditional branch without requiring disjointness as only
one branch is executed (see §3.2.1).

The cas rule states that a pcas is typed against the memento label it uses (lab); the chkpt behaves
analogously so long as the checkpoint body ( #»s ) is read-only. We require the body’s result to be immediately
checkpointed before being assigned to a register for deterministic replay. For instance, consider an execution
of Algorithm 2 where among prev, next and blk obtained at L3only prev is checkpointed before a crash. The
post-crash execution then re-calculates new values, (prev′, next′, blk′), and uses the old prev from the memento
but the new values next′, blk′, mixing the results of different executions across crashes. This leads to a bug: as
list traversal is non-deterministic, prev and next′ may not be adjacent to each other, breaking the list invariant.

The loop-simple states that a loop without loop-carried dependence is typed if its body is ( #»s ). Here, the
loop-dependent variable “_” means it is written to nowhere, or equivalently, there are no dependent variables
(§3.2.2). The loop states that a loop is typed if so is its body, its dependent variable (r ) is checkpointed at the loop
head, and the checkpoint and body use disjoint memento labels (§3.2.3). The call states that an RW function
call is typed against the memento label it uses.

3.3.3 Detectability of Typed Programs

We sketch the proof of the detectability of typed programs and give the full proof in §B.6. Unlike the prior
work [Friedman et al. 2018; Attiya et al. 2018], we formulate detectability in terms of behaviour refinement.
For a program, p, we say event trace tr is a behaviour of p, written tr ∈ BE(p), if there exists M such that
init(p)

tr→
∗
p M , where init(p) is the initial machine of p and tr→

∗
p is the reflexive transitive closure of the machine

6For brevity, we omit the definition of the read-only ⊢RO judgement as it is straightforward (see §B.5 for the its definition).
7We do not establish the usual soundness result with our type system; e.g. while we can derive∆ ⊢∅ [r1 := r2] for any∆, r1 and r2, the

r1 := r2 may get stuck as r2 is a free variable. Though it is straightforward to adapt our system for soundness, we forgo this as this is not
our aim and our type system is sufficient for our main goal: detectability by deterministic replay.
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transition tr−→p with concatenated event traces. A tr is a crash-free behaviour of p, written tr ∈ B(p) if it
is a behaviour from a crash-free machine execution using only machine-step. We then prove the following
theorem.

Theorem 3.3.1 (Detectability). Given a program p, if ⊢ p holds, then BE(p) ⊆ B(p).

This theorem ensures failure transparency in that crashes do not introduce additional behaviours; that is, this
theorem ensures the detectable recoverability of typed programs.

We prove this theorem by gradually transforming an arbitrary execution of p into one without crashes
while preserving the behaviour, as illustrated in Fig. 3.3. We exploit the fact that each thread interacts with the
other components only via event traces: as long as event traces are preserved, we can locally merge a thread’s
consecutive executions across crashes into one without crashes. Subsequently, the resulting machine execution
would produce the same behaviour as before with fewer crashes. Going forward, we will get a crash-free execution
with the same behaviour.

Deterministic Replay We formulate the ability to locally merge thread executions in Theorem 3.3.2. We
assume that a thread executes the statements #»s twice, before and after a crash. As such, the statements,
continuations, and volatile thread state are initialized and the memento (mmtsω) is preserved. There then is
an execution without crashes that results in the same memento (mmtsω) while emitting an event trace (trx )
that refines the original event trace (tr ++ tr): we can reach trx from tr ++ tr by removing some read events.
Trace refinement is sufficient to replace thread executions in a machine execution while preserving its behaviour,
because machine transitions ignore read events and memory transitions are closed under trace refinement.

Definition 3.3.2 (Deterministic Replay). Let δ be a function environment and
#»s be a list of statements. We

say
#»s is deterministically replayed for δ, denoted by DR(δ, #»s ), if the following holds:

∀tr, tr, #»sω,
#»sω,

# »cω,
# »cω, ts , tsω, tsω,mmts ,mmtsω,mmtsω.

#»s , [], ts ,mmts
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω −→ #»s , [], ts ,mmtsω

tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω −→

∃trx , #»sx ,
#»cx , tsx .

#»s , [], ts ,mmts
trx−−→

∗
δ

#»sx ,
#»cx , tsx ,mmtsω ∧ trx ∼ tr ++ tr .

Lemma 3.3.3. Let δ be an environment, ∆ be an environment type,
#»s be a list of statements, and labs be a set

of labels. If we have ⊢ δ : ∆ and∆ ⊢labs
#»s , then DR(δ, #»s ).

This lemma states that typed statements are deterministically replayed. We prove it by strong induction on the
derivations of ⊢ δ : ∆ and ∆ ⊢labs

#»s , formalizing the arguments presented in §3.2.

Erasure In the absence of crashes, a program p behaves equivalently to the erasure of p, written erase(p),
intuitively corresponding to removing the highlighted parts in §3.2. In particular, memento parameters and
arguments are removed, checkpoint operations are removed, and pcas operations are replaced with plain cas

operations. We thus obtain the following theorem.

Theorem 3.3.4 (Erasure). Given a program p, If ⊢ p holds, then BE(p) ⊆ B(erase(p)).

The theorem effectively reduces the complexity of designing detectable and persistent DS to that of designing
volatile DS (already well-studied) and adapting volatile DS to our type system (straightforward). In particular,
programmers no longer need to write challenging-to-develop and reason-about DS-specific recovery code, which
is required by most hand-tuned persistent DSs. This way, we will straightforwardly design a wide variety of
high-performance detectable DSs in §3.5.
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3.4 Implementation of the Core Language

To show the feasibility and practicality of our core language in §3.3, we implement it on Intel-x86.

3.4.1 Framework

PM Primitive We use the App Direct mode of Intel-x86 Optane DCPMM to access PM locations with byte
addressability via load, store, and CAS instructions. We use clwb instructions to ensure a write to a PM location is
persisted: a store or CAS to a PM cache line cl is guaranteed to be persisted if followed by clwb cl and then sfence,
mfence, or a successful CAS. We refer the reader to Cho et al. [2021b]; Raad et al. [2019b] for the formal semantics
of clwb. We use Ralloc [Cai et al. 2020] for PM allocation and our modified version of Crossbeam [Developers
2019] for safe memory reclamation of shared PM locations (see §3.5.1 for more details on reclamation).

Crash Handler To emulate machine-crash, we install a crash handler that continuously observes and
handles crashes. (1) When a thread crashes, which may happen due to signals but not widely considered in the
literature [Attiya et al. 2018; Ben-David et al. 2019; Attiya et al. 2022], the handler creates a new thread that
executes the original thread’s initial statements. It also initializes the thread state (ts), e.g. setting ts.time to
zero, and runtime resources such as reclamation handle (see §3.5.1 for more details). (2) When the whole system
crashes, the post-crash execution first executes the handler, which then initializes the system state as if every
thread experiences just a thread crash instead of the system crash. Specifically, the handler performs Ralloc’s
garbage collection, initializes volatile data used by primitive operations (see §3.4.2 and §3.4.3 for details), and
revives the threads.

Timestamp The core language assumes a consistent clock for multiple threads across crashes. We design
such a clock on Intel-x86 using the rdtscp instruction generating hardware timestamps. The hardware clock is
consistent for a single thread: strictly increasing and serializing in that rdtscp followed by lfence is not reordered
with the surrounding instructions [Intel 2024a].

However, Kashyap et al. [2018] observe that the clock is not consistent for multiple threads across crashes as
follows. (1) The clock is reset to zero when the machine is rebooted after a crash. (2) The clock has an inter-core
skew due to misaligned delivery of the RESET signal at the system boot. As such, even if an rdtscp instruction
happens before [Owens et al. 2009] another in a different thread, their timestamps may not be ordered. Still, the
skew is invariant: constant regardless of dynamic frequency and voltage scaling. For the core language, we
address these caveats as follows.

For reset, the crash handler calibrates the clock at the system boot. Specifically, it ❶ calculates the maximum
timestamp checkpointed in all mementos, tmax; ❷ generates the current timestamp, tinit, using rdtscp; and ❸ adds
offset (−tinit + tmax) to all timestamps generated by rdtscp. The calibrated timestamps are then always larger
than those checkpointed before the system boot.

For skew, we relax the synchronization criteria of the clock. We follow Kashyap et al. [2018] to measure the
maximum pair-wise inter-core skew, Og . We then make the following observation.

Observation 1 (Weak Global Synchronization). Suppose a and b are rdtscp; lfence instruction se-

quences. If either a
po→ b (single-thread program order) or a

hb→ wait(Og)
hb→ b (multi-thread happens-before), then

a’s timestamp is less than b’s.

Here, wait(Og) is a spin loop to provide a sufficient margin for the clock skew. The single-thread program order
and multi-thread happens-before order conditions are used in the implementation of checkpoint (§3.4.2) and CAS
(§3.4.3) operations, respectively.
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Algorithm 4 Detectable checkpoint
1: function chkpt( #»s ,mid)
2: t0 := Loadpln(mmts[mid][0].time)

3: t1 := Loadpln(mmts[mid][1].time)

4: tmmt := (t0 < t1) ? t1 : t0

5: (st, lt) := (t0 < t1) ? (0, 1) : (1, 0)

6: if tmmt > ts.time then

7: ts.time := tmmt

8: vr := Loadpln(mmts[mid][lt].val)

9: return vr

10: end if

11: vr := exec
#»s

12: Storepln(mmts[mid][st].val, vr )

13: if SizeOf(mmt) > CLSIZE then

14: flushoptmmts[mid][st].val; sfence

15: end if

16: t := rdtscp

17: Storepln(mmts[mid][st].time, t)

18: flushoptmmts[mid][st].time; sfence

19: ts.time := t

20: return vr

21: end function

The single-thread program order sufficiently separates two rdtscp instructions even if the thread is context-
switched in-between. Even if the thread switches to a core with a negative timestamp offset, its effect, bounded
by Og (60ns at the maximum in our evaluation), is subsumed by the context switch latency (2-5μs at the
minimum [Microsoft 2023; Blandy 2022]). Similarly, for themulti-thread happens-before condtition,Og sufficiently
separates two rdtscp instructions regardless of their executed cores because Og is the maximum inter-core skew.

3.4.2 Detectable Checkpoint

We implement the chkpt operation of the core language (§3.3.1) on Intel-x86. Following Ben-David et al.
[2019], we ensure the atomicity of chkpt (i.e. one never observes a partially checkpointed value) by double
buffering: while a buffer is being written, the other buffer holds a valid value. Moreover, we record timestamps
and values in PM to deterministically replay control flow (§3.2.2).

We present our implementation in Algorithm 4. To atomically update a timestamped value in the abstract
memento (§3.3.1), its concrete implementation uses two timestamped values, stale and latest. The algorithm then
❶ compares the given memento’s two timestamps (st and lt) to distinguish stale from latest (L2-L5); ❷ if the
memento’s timestamp (tmmt) is greater than the thread’s replaying timestamp (ts.time), then the operation was
already performed before the crash. In this case, ts.time is incremented to tmmt first, and then the pre-crash
result is replayed by simply returning the old returned value (L6-10); ❸ write the result of the given statements
to the memento’s stale buffer (L12); ❹ flush the stale buffer, unless the memento fits in a cache line so that the
buffer is anyway flushed at L18, following van Renen et al. [2020]’s optimization technique (L14); and ❺ update
the stale timestamp to the current timestamp (L17), flush it (L18), update ts.time (L19), and return the result (L20).
Here, “flushopt l” is a shorthand for performing clwb cl on all cache lines cl that spanning location l.

3.4.3 Detectable Compare-and-Swap

We implement the pcas operation of our core language (§3.3.1) on Intel-x86. Following Attiya et al. [2018];
Ben-David et al. [2019], our pcas on location l comprises three phases: locking l with an architecture-provided
plain CAS, committing the operation with PM writes, and unlocking l with another plain CAS. If a thread observes
a locked location, it helps the ongoing operation to guarantee lock freedom. When helping, it is crucial to notify
such a fact to the helped thread to ensure deterministic replay; otherwise, in the case that a thread performs a
locking CAS, crashes, and gets helped, then the thread would incorrectly perform the same CAS (that is already
performed by the helper) again in the post-crash execution. While the helping mechanism of Attiya et al. [2018]
(resp. Ben-David et al. [2019]) requires an array ofO(T 2) (resp. O(T )) sequence numbers in PM for each location
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(where T is the number of threads), we reduce the space consumption in PM to only 8 bytes per location. The
key idea is comparing timestamps as for loops (§3.2.2).

Components An 8-byte location consists of 1-bit parity for helping, 1-bit helping flag to prevent ABA, 8-bit
thread id (0 reserved for the pcas algorithm and 1-255 usable), 54-bit address annotated with user tag (64TB with
8-bit tag or 256GB with 16-bit tag)8. The tag is reserved for users to annotate arbitrary bits to pointer values
for correctness [Harris 2001] or optimization [Chen et al. 2020]. We assume the encode and decode functions
respectively convert a ⟨parity, thread id, offset⟩ tuple to a location and vice versa.

As with the chkpt operation, pcas ensures atomicity by double buffering, storing two copies of a value and
an annotated timestamp in its implementation of primitive memento. A 62-bit timestamp generated from rdtscp

(sufficient for about 47 years without overflow) is annotated with a 1-bit parity and a 1-bit success flag, forming
8 bytes in total. We assume encodeT and decodeT convert a ⟨parity, success flag, timestamp⟩ tuple into an
annotated timestamp and vice versa.

For helping, our framework tracks several timestamps in DRAM and PM. The ts.cas timestamp in DRAM
records the parity-annotated timestamps of each thread’s last CAS operation across crashes, while the global
arrays HELP [2][T ] in PM record the timestamp of the last helping for each parity and thread, written by
the helpers. Our framework maintains the invariant that the thread ts ’s CAS was helped if ts.cas is less than
HELP [p][ts] for some appropriate parity p (see below).

The crash handler initializes ts.cas with the maximum timestamp checkpointed in pcas primitive mementos
when a thread crashes, and uses HELP to calculate tmax for clock calibration when the system crashes (§3.4.1).

Load We present our pload and pcas implementation in Algorithm 5. As pcas acquires a lock by temporarily
tagging parity, success flag, and thread id to the location value in PM, we also implement pload that helps the
ongoing pcas to release the lock, ensuring it reads a value persisted in PM. Specifically, Loadpln(L1) performs an
architecture-provided plain load and invokes Help (see below for details on helping). As such, both operations
are oblivious to tags: their input and output location values are tagged with zero.

CAS: Normal Execution The pcas operation (L5) begins by identifying the stale and latest values in the
memento (L9). It then performs two main tasks: (1) determining whether the CAS operation was completed or
crashed while executing previously with the latest values in the memento, and if so, returning the previous result
value (L12-27); (2) if not, executing an actual CAS operation (L28-52). For easier understanding, we describes the
second task first.

The CAS operation ❶ tries to lock the location by performing a plain CAS to the new value annotated with
the next parity (¬pown) and the thread id (tid , L30-34); ❷ if unsuccessful, it finishes the operation after updating
ts.time and persisting the failure to the memento (L36-41); ❸ ensures the operation is committed by flushing
the plain CAS (L43); and ❹ completes the operation after updating ts.time (L44) and ts.cas (for the next CAS
operation) (L46), persisting the success to the memento (L48), attempting to unlock the location by atomically
clearing annotations (L50), and (regardless of the result) ensuring the writes to the memento are flushed (L51).

CAS: Replay To demonstrate that the execution of pcas is deterministically replayed, we first define the
following events of a pre-crash execution. Commit is the flush of the first plain CAS at L30. Note that this
event does not coincide with the flush instruction at L43, as a write can be voluntarily flushed before requested.
Checkpoint is the flush of memento writes at L39 and L47. Unlock is the flush of the second plain CAS at L50.

8If 64 or more bits are necessary, a 118-bit integer supporting detectable CAS can be constructed from 128-bit machine words and
double-word machine CAS operations.
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Algorithm 5 Load and Detectable CAS for Location Values
1: function pload(loc) ▷ for location values
2: cur := Loadpln(loc)

3: return Help(loc, cur)
4: end function

5: function pcas(loc, old, new,mid)
6: t0 := Loadpln(mmts[mid][0].time)

7: t1 := Loadpln(mmts[mid][1].time)

8: tmmt := (t0 < t1) ? t1 : t0

9: (st, lt) := (t0 < t1) ? (0, 1) : (1, 0)

10: pstmmt := Loadpln(mmts[mid][lt].time)

11: (parmmt, sucmmt, tmmt) := decodeT(pstmmt)

12: if tmmt > ts.time then

13: ts.time := tmmt

14: if sucmmt then return (true, old)

15: vr := Loadpln(mmts[mid][lt].val)

16: return (false, vr )

17: end if

18: _ := pload(loc)

19: (parown, _, town) := decodeT(ts.cas)
20: thelp := Loadpln(HELP [¬parown][tid])
21: if town < thelp then

22: ts.time := thelp

23: pstsuc := encodeT(¬parown, true, thelp)
24: Storepln(mmts[mid][st].time, pstsuc)

25: flushoptmmts[mid][st].time; sfence

26: return (true, old)

27: end if

28: old′ := encode(Even, false, 0, old)
29: new′ := encode(¬parown, false, tid, new)

30: r1 := CASpln(loc, old′, new′)

31: t := rdtscp; lfence

32: if r1 is (Err cur) then

33: cur := Help(loc, cur)
34: if cur = old then goto 30

35: ts.time := t

36: pstfail := encodeT(Even, false, t)
37: ts.cas := pstfail

38: Storepln(mmts[mid][st].val, cur)

39: Storepln(mmts[mid][st].time, pstfail)

40: flushoptmmts[mid][st]; sfence

41: return (false, cur)

42: end if

43: flushopt loc; sfence

44: ts.time := t

45: pstsuc := encodeT(¬parown, true, t)
46: ts.cas := pstsuc

47: Storepln(mmts[mid][st].time, pstsuc)

48: flushoptmmts[mid][st].time

49: new′′ := encode(Even, false, 0, new)

50: r2 := CASpln(loc, new′, new′′)
51: if r2 is Err then sfence

52: return (true, old)

53: end function

Based on the timing of a crash, the memory state that can be observed during post-crash execution can be
categorized as follows:

(E1) Before commit: the latest timestamp in the memento (tmmt) is less than or equal to9 the thread’s last observed
timestamp (ts.time).

(E2) Between commit and checkpoint: tmmt is still less than or equal to ts.time. The location (loc) can have one of
two states: (E2a) loc is still locked by the thread; or (E2b) loc is not locked by the thread as it is unlocked by
another thread’s helping.

(E3) After checkpoint: tmmt is greater than ts.time.

The replay algorithm (L12-27) exhaustively covers all the crash cases mentioned above. After decoding the
memento’s annotated timestamp (L11), it compares tmmt and ts.time. If tmmt is greater than ts.time (corresponding
to E3), the pre-crash execution is replayed: it updates ts.time and if pcas was successful, returns true and old

(L14); otherwise returns false and the value stored in the memento (L16). If tmmt is less than or equal to ts.time,
it helps the location’s ongoing pcas if it exists (L18), which transitions the sub-case E2a to E2b. To distinguish

9If the memento function is within a loop, it is possible for the timestamp of the memento and the thread’s last observed timestamp to be
equal.
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Algorithm 6 Help for Detectable CAS
1: function Help(loc, old)
2: (parold, dscold, tidold, oold) := decode(old)
3: if tidold = 0 then return oold

4: wait(Og)

5: t := rdtscp; lfence

6: wait(Og)

7: cur := Loadpln(loc)

8: if old ̸= cur then old := cur; goto 2

9: flushopt loc

10: rdsc := RegisterDesc(loc, old)
11: if rdsc is (Ok cur) then

12: (parold, _, tidold, oold) := decode(cur)
13: else

14: old := Loadpln(loc); goto 2

15: end if

16: thelp := Loadpln(HELP [parold][tidold])

17: if t ≤ thelp then

18: old := Loadpln(loc); goto 2

19: end if

20: r := CASpln(HELP [parold][tidold], thelp, t)

21: if r is Err then

22: old := Loadpln(loc); goto 2

23: end if

24: flushoptHELP [parold][tidold]

25: old′ := encode(Even, false, 0, oold)

26: if CASpln(loc, old, old′) is (Err cur) then
27: old := cur; goto 2

28: end if

29: flushopt loc; sfence

30: return oold

31: end function

32: function RegisterDesc(loc, old)
33: (_, dscold, tidold, seqold) := decode(old)
34: if dscold is true then

35: goto 45

36: end if

37: seqnext := Loadpln(DESC[tid].seq) + 1

38: Storepln(DESC[tid].seq, seqnext)

39: Storepln(DESC[tid].new, old)

40: flushoptDESC[tid]

41: desc′ := encode(Even, true, tid, seqnext)

42: CASpln(loc, old, desc′)
43: old := Loadpln(loc)

44: (_, dscold, tidold, seqold) := decode(old)
45: new := Loadpln(DESC[tidold].new)

46: if dscold ∧ seqold == DESC[tidold].seq then

47: return Ok new

48: end if

49: return Err
50: end function

between cases E1 and E2b, the last timestamp increased by helper and the timestamp of the thread’s last CAS
operation should be compared. To this end, it decodes ts.cas, retrieves the parity and timestamp (town), and loads
the helping timestamp (thelp) using the opposite parity (see below for details of parity and timestamp on helping).
If thelp is greater than town (corresponding to E2b), it detects (from the invariant of ts.cas and HELP ) that the
last CAS operation actually succeeded and finalizes the operation (L21-27). Otherwise (corresponding to E1), it
proceeds to the normal execution (L28-52).

Helping We present our Help implementation in Algorithm 6. For lock-freedom, a thread may invoke
Help(loc, old) (L1) for loc’s ongoing pcas operation to be flushed, unlock it and to return an unlocked (i.e.
untagged) location value. It ❶ returns the given value old read from loc if is already unlocked (L3); ❷ waits
for Og , reads the current timestamp (t), and waits for Og again to make t synchronized across other threads
(L4-L6, see Observation 1); ❸ loads a value, say cur, from loc again, and if old ̸= cur, then retries from L2 (L8);
❹ ensures the ongoing operation is committed by flushing loc (L9); ❺ registers the helping descriptor flag to
prevent ABA (L10-15); ❻ loads HELP [parold][tidold], the last CAS help’s timestamp for the parity and thread id
annotated in old, and if it is bigger than t, retries the operation (L16-19); ❼ performs a plain CAS and flush on
HELP [parold][tidold] to atomically increase it to t, and if unsuccessful, retries the operation because the CAS
has been already helped (L20-24); ❽ tries to unlock the location with a plain CAS and a flush, and if unsuccessful,
retries the operation (L25-29); and ❾ returns the unlocked location (L30).
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Figure 3.4: Synchronization of pcas() and Help().

For deterministic replay, we show thatHelp() updatesHELP for a re-execution of pcas to enter the branch
at L21 if and only if the previous execution of pcas crashed between commit and checkpoint of success (E2). To
this end, it is sufficient to prove the following.

Lemma 3.4.1. Let pn and tn denote the parity and timestamp of tid’snth pcas invocation. The sequence {pi} then
alternates between even and odd numbers, and the sequence {ti} is strictly increasing. Then tn−1 < HELP [pn][tid]

if and only if either the nth
or a later CAS with parity pn was helped.

Proof. Suppose a Help operation generates a timestamp th at L5 and tries to help the second plain CAS
of thread tid’s n-th CAS invocation, as illustrated in Fig. 3.4. Here, we depict the plain CASes and timestamp
generations of tid’s (n − 1)st to (n + 1)st CAS invocations, and loads and timestamp generations of a Help
invocation, where Updaten,i represents the ith plain CAS of tid’s nth CAS, and Load represents a load from a
location. Then we have the following properties from Observation 1: (1) tn−1 < th from a

po→ c
rf→ h

po→ i
po→ j;

and (2) th < tn+1 from j
po→ k

po→ l
rb;rf ?

→ e
po→ g, where po is the program order; rf is the reads-from relation

from each write to its readers; rb is the reads-before relation from each read to the later writes; rb;rf ? is the
reads-before relation possibly followed by a reads-from relation; and all relations constitute the happens-before
relation hb in the x86-TSO memory model (see Owens et al. [2009] for more details).

Recall that Help persists Updaten,1 (L9), atomically increases HELP [pn][tid] to th (L20-L24), and helps
Updaten,2 (L25-L29). If thread tid’s nth CAS was helped, then we have tn−1 < th ≤ HELP [pn][tid] due to
property (1). Conversely, if tn−1 < HELP [pn][tid], then it cannot be the result of a help for (n− 2)nd or earlier
CASes or those with parity ¬pn due to property (2).

Preventing ABA To see why an ABA problem may happen, consider the following scenario for a location, say
l:

(1) Thread A is performing pcas. It locks l, atomically changing the value from v1 to v2 with the first plain CAS
(L30 in Algorithm 5).

(2) Thread B is performing Help(). It is about to help T1’s operation, read a timestamp, and sleep for a while (L5
in Algorithm 6).

(3) Thread A finishes pcas by itself, and performs another pcas from v2 to v2. Again, it locks l, atomically
changing the value from v2 to v2 with the first plain CAS (L30 in Algorithm 5).

(4) Thread B validates its helping operation by reading v2 at L7 in Algorithm 6. Since the old and new values are
the same as v2, and Thread B thinks it can help Thread A’s pcas.

(5) Thread A is crashed, and Thread B wrongly helps Thread A’s operation by recording an old timestamp
(generated before the sleep) to HELP .
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(6) Even though Thread A’s operation was helped, Thread A thinks that it failed because an old timestamp is
recorded in HELP .

We prevent such an ABA problem with sequence numbers in helping descriptors. More specifically, we
introduce a shared PM array, DESC , that records helper’s information. For each tid , DESC[tid ] records the
helper tid ’s information consisting of the new location value to write as the result of helping, annotated with tid
and parity; and a unique sequence number. Instead of helping the second plain CAS directly at L26 in Algorithm 6,
the helper announces its intention to help by atomically updating the location to a tuple consisting of the helping
bit, helper’s tid , and helping’s sequence number. Once an intention was announced, it can be served by any
helpers. Thanks to the unique sequence number, now helpers cannot be confused with two pcas operations that
atomically updates to the same value, thus preventing the ABA problem.

3.5 Implementation of Concurrent Data Structures

As primitive detectable operations, we implement Chkpt-mmt: chkpt (§3.4.2); CAS-mmt: pcas (§3.4.3);
Indel-mmt: insertion/deletion for atomic locations that performs fewer flushes than pcas. These primitives
capture the essence of optimization in Friedman et al. [2018]; Li and Golab [2021]’s hand-tuned detectable
Michael-Scott queues (MSQs) [Michael and Scott 1996] (see §B.1 for details). Accordingly, we extend the core
language to support additional primitive operations, including Vol-mmt: a volatile location for cached values
requiring no flushes (see §B.2.1 for details); and Comb-mmt: an adaptation of Fatourou et al. [2022]’s general
combiner for persistent DSs to our framework. While the original combiner is detectable, it only supports a single
invocation of each operation by each thread, e.g. the following statements are not detectably recoverable:

1: v1 := Deqeue(q); v2 := Deqeue(q); Enqeue(q, v1 + v2)

If an execution crashes while performing Deqeue, we cannot detect whether it was for v1 or v2. In contrast, we
distinguish the two invocations by distinct sub-mementos.

Using the primitives and our type system, we implement the following detectable, persistent DSs: List-mmt:
CAS-based lock-free linked-list; TreiberS-mmt: CAS-based Treiber stack [Treiber 1986]; MSQ-mmt-O0: CAS-
based MSQ;MSQ-mmt-O1: MSQ based on Indel-mmt and Vol-mmt; CombQ-mmt: combining queue based on
Comb-mmt; and Clevel-mmt: CAS-based lock-free resizing hash table of Chen et al. [2020]10, which we optimize
with an advanced type rule, loop-try (see §B.2.2 for details). Theorem 3.3.4 guarantees the detectability of these
implementations. In addition, we implement MSQ-mmt-O2: a variant of MSQ-mmt-O1 with an invariant-based

optimization, which reduces PM flushes based on the invariant that certain location values are always persisted
(see §B.2.3 for details).

3.5.1 Safe Memory Reclamation

All pointer-based lock-free DSs in DRAM should deal with the problem of safe memory reclamation (SMR).
For instance, Treiber’s stack [Treiber 1986] is basically a linked-list of elements with the head being the stack top,
where a thread detaches the head block while the other threads may hold a local pointer to the same block. Due
to the local pointer, the reclamation of the detached block should be deferred until every thread no longer holds
such local pointers. Often, the SMR problem is systematically handled with reclamation schemes such as hazard
pointers (HP) [Michael 2004] and epoch-based reclamation (EBR) [Fraser 2004].

Prior works on persistent lock-free DSs in PM also handle the SMR problem with reclamation schemes:
Friedman et al. [2018] use HP; and DSS [Li and Golab 2021] and (nb)Montage [Wen et al. 2021; Cai et al. 2021]

10We use a bug-fixed version due to Chen et al. [2022].
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use EBR. However, the prior work does not discuss how to ensure durable linearizability or detectability in the
presence of memory reclamation in details. In fact, we discover and fix a use-after-free bug in the queues of
Friedman et al. [2018]; Li and Golab [2021] in case of crashes due to a lack of flush. In this section, we present
four concrete guidelines for safe memory reclamation of PM.

Introducing theRetire Primitive Operation SMR schemes provide the retire function that receives a detached
block and reclaims it when every thread no longer references it. We extend the core language to support such a
retire function, retire(e), and the type system to admit the following rule:

(retire)

∆ ⊢∅ [retire(e)]

Here, e is an expression that evaluates to a PM location.

Clearing Local Pointers in Mementos on PM Before reclamation, we should clear local pointers not only
in program variables on DRAM but also in mementos on PM. Otherwise, blocks may be reclaimed, the thread
crashes, and then the operation retrieves and dereferences its memento’s local pointers, invoking use-after-free
error. We prevent this error by clearing mementos just before the end of a critical section. More specifically, we
(1) wrap a thread’s operation on its memento within a critical section; and (2) at the end of a critical section,
clear the memento by overwriting null to all of its PM locations. For clearing’s crash consistency, we install a
per-thread, 1-bit “clearing” flag, which is toggled and flushed at the beginning and the end of the clearing. Should
a crash happens, the crash handler first checks whether the flag is set, and if so, resumes clearing.

Flushing Location before Retirement The queues of Friedman et al. [2018]; Li and Golab [2021] have a
use-after-free bug caused by the lack of a flush before retirement. Their delete operations detach a block, say blk,
from a location, say loc, of the DS and retire it without flushing loc. Then the code may incur a use-after-free
error in the following execution scenario: (1) blk is reclaimed; (2) the system crashes; (3) loc was not persisted
and it still points to blk; and (4) the post-crash execution dereferences blk which is already reclaimed.

A straightforward fix would insert a flush between the CAS and the retirement, but we observe that such
a flush is detrimental to the performance. We mitigate the slowdown by exploiting the following property of
EBR: if a memory block is retired in a critical section, then it is never reclaimed in the same critical section. Now
instead of flushing loc, we enforce the code to defer the flush of loc and actually perform such flushes in batch at
the end of a critical section. (Even if an execution is crashed without persisting loc, we can restore loc’s new
value after the crash by traversing the DS.) Batching is beneficial for two reasons: (1) we can merge multiple
flushes; and (2) we can asynchronously finish a critical section so that the flushes are performed not in the critical
path. In our evaluation, we observe that the deferred flushes incur no noticeable runtime overhead.

Allowing Double Retirement A straightforward application of SMR schemes may incur double-free error in
case of a thread crash due to the thread’s inability to detect whether a block is retired. Suppose a thread crashes
right after retiring a block. Then the post-crash recovery execution would re-retire the same block, because it
cannot detect whether the block was already retired, causing typical SMR schemes to free the block twice.

We prevent this error by (1) retaining the critical section of a crashed thread and reviving it for the post-crash
recovery execution; and (2) relaxing the retirement condition by allowing double retirements in a single critical
section. For the former, we propose a new API for retrieving the critical section by thread id; for the latter, we
install a buffer of retired blocks and deduplicate it at the end of a critical section.
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Figure 3.5: Multi-threaded throughput of detectable CASes.

3.6 Evaluation

We evaluate the detectable recoverability (§3.6.1) and performance (§3.6.2) of our detectable CAS, list, queues
and hash table. We implement our framework and DSs in Rust nightly-2022-05-26 [Team 2019] and build them
with release mode. We use a machine running Ubuntu 20.04 and Linux 5.4 with dual-socket Intel Xeon Gold
6248R (3.0GHz, 24 cores, 48 threads) and an Intel Optane DCPMM (100 Series, 256GB). We pin all threads to a
single socket to keep all DCPMM traffic within the same NUMA node. For brevity, we present only key results
here; see §B.3 for the full results.

3.6.1 Detectability

We evaluate the detectability of two distinct crash scenarios: thread crashes and system crashes. Thread
crashes present a more non-deterministic and challenging aspect to address in comparison to system crashes.
Conversely, system crashes provide an opportunity to examine if data is accurately retained in persistent memory,
thereby enabling the detection of missing flush bugs in weak persistency memory models [Cho et al. 2021b].

To perform stress test under thread crashes, we randomly crash an arbitrary thread. To crash a specific
thread, we use the tgkill system call to send the SIGUSR1 signal to the thread and let its signal handler abort
its execution. To the best of our knowledge, this is the first general stress test for thread crashes carried out for
detectable, persistent DSs. For the integration test of CAS and each DS, we observe no test failures for 100K

runs with thread crashes.
Provoking an actual system crash in a controlled and efficient manner is challenging within conventional

systems. Instead, we perform stress test under simulated system crashes by running model-checking tools,
Yashme [Gorjiara et al. 2022b] and PSan [Gorjiara et al. 2022a], in the “random” mode, which does not enumerate
all possible executions and thus possibly fails to detect existing bugs. We use the random mode to avoid state
explosion. For the integration test of CAS and each DS,we observe no test failures for 1K runswith simulated

system crashes.

3.6.2 Performance

Unless specified otherwise, we measure the throughput for a varying number of threads: 1 to 8 and the
multiples of 4 from 12 to 64; we report the average throughput of 5 runs, each for 10 seconds.

CAS Fig. 3.5 presents the throughput and memory usage of our CAS-mmt; PMwCAS: detectable multi-word
CAS by Wang et al. [2018]; and NrlCAS: detectable CAS by Attiya et al. [2018]. We reimplement PMwCAS in
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Figure 3.6: Multi-threaded throughput of persistent lists.

(a) Enqueue-dequeue (b) Enqueue-20% (c) Enqueue-50% (d) Enqueue-80%

Figure 3.7: Multi-threaded throughput of persistent queues.

Rust to use the same allocator as the other CASes; we implement NrlCAS in Rust because its source code is not
publicly available. Over-subscription over 48 threads is indicated as shaded regions. (1) When multiple threads
perform CASes randomly on a varying number of locations (Fig. 3.5a, Fig. 3.5b, Fig. 3.5c), CAS-mmt exhibits higher
throughput than the others for every thread count, except for NrlCAS with low thread counts for 1K locations.
(2) When multiple threads perform CASes randomly on 1M locations (Fig. 3.5d), NrlCAS indeed consumes O(T 2)

PM locations, where T is the number of threads. (3) PMwCAS exhibits lower throughput than reported by Wang
et al. [2018], because PM was not generally available at the time of writing and they experimented with DRAM.
Also, PMwCAS generally exhibits lower throughput than single-word CASes because it supports multi-word CAS.

List Fig. 3.6 illustrates the throughput of List-mmt; Capsule: detectable linked-list by Ben-David et al. [2019];
and Capsule-Opt: optimized detectable linked-list and Tracking: detectable linked-list by Attiya et al. [2022].
We use the DS implementation and evaluation workloads of Attiya et al. [2022]: from a random initial list,
read-intensive workloads perform inserts, deletes and finds for 15%, 15%, and 70% times; and update-intensive
workloads perform them for 35%, 35%, and 30% times. (1) For small key ranges, List-mmt significantly outperforms
the others thanks to fewer flushes to PM of timestamp-based replay (Fig. 3.6a, Fig. 3.6c); and (2) for large key
ranges, all lists are saturated at almost the same performance because search dominates the cost (Fig. 3.6b,
Fig. 3.6d).

Queue We compare the throughput of our queues; DurableQ: undetectable durable MSQ by Friedman et al.
[2018]; LogQ: detectable MSQ by Friedman et al. [2018]; DssQ: detectable MSQ by Li and Golab [2021]; PBcombQ:
detectable combining queue by Fatourou et al. [2022]; ClobberQ: transaction-based queue in Clobber-NVM [Xu
et al. 2021]; PMDKQ: transaction-based queue in PMDK [Intel 2024d]; and CorundumQ: transaction-based queue
in Corundum [Hoseinzadeh and Swanson 2021]. We reimplement DurableQ and LogQ in Rust for a use-after-free
bug (§3.5.1); reimplement PBcombQ in Rust because it does not implement detectable recovery and uses a custom
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Figure 3.8: Multi-threaded throughput of hash tables for uniform distributions.

allocator; and implement DssQ in Rust because its source code is not publicly available.
Fig. 3.7 shows the throughput of queues for four workloads: enqueue-dequeue: each operation enqueues

an item and then immediately dequeues an item; enqueue-X% (with X=20, 50 or 80): each operation enqueues (or
dequeues) an item for the probability of X%. We initialize the queues with 10M items to prevent excessive empty
dequeues. (1) Transaction-based queues are noticeably slower than MSQs and combining queues. (2) Combining
queues significantly outperform MSQs at high thread counts, in line with observations by Fatourou et al. [2022].
Thus, we cut the graphs to focus on MSQs rather than combining queues. (3) Although not shown in the graphs,
it’s worth noting that CombQ-mmt incurs a slight overhead over PBcombQ, especially for dequeue operations,
because the latter saves a flush by assuming that a thread does not invoke an operation multiple times (see
above). (4)MSQ-mmt-O2 outperforms hand-tuned persistent MSQs with and without detectability thanks to fewer
flushes to PM of timestamp-based deterministic replay (§3.2.2, see also §3.7). In addition, DurableQ’s dequeue
incurs PM block allocation to store the return value. (5) MSQ-mmt-O1 performs comparably with hand-tuned
MSQs for dequeue-heavy workloads but not for enqueue-heavy workloads, because without an invariant-based
optimization, its enqueue performs two plain CASes. (6) MSQ-mmt-O0 is outperformed by hand-tuned MSQs due
to its CAS-based dequeue flushing the head pointer and invalidating its cache line for every thread.

Hash Table We compare the throughput of Clevel-mmt with the original, undetectable Clevel [Chen et al.
2020] using the PiBench benchmark [Lersch et al. 2019] specifically designed for PM hash tables. We employ
the Clevel implementation and evaluation workloads from a PM hash table evaluation paper [Hu et al. 2021],
which consists of seven workloads (insert, positive and negative search, delete, and write-heavy, balanced, and
read-heavy) and two key distributions: uniform and skewed (80% of accesses target 20% of keys); see §B.3 for full
details.

Fig. 3.8 illustrates multi-threaded throughput of hash tables under uniform key distributions. The results
for the skewed distribution are similar. (1) Clevel-mmt exhibits a slight overhead over Clevel for positive search
queries because Clevel-mmt’s load operations checks if the location value is locked and it should help concurrent
pcas (§3.4.3). (2) Clevel-mmt exhibits a noticeable overhead over Clevel for delete queries because Clevel-mmt’s
delete operations perform two plain CASes for detectability. (3) Clevel-mmt outperforms Clevel for insert queries,
and Clevel does not scale well over 24 threads. The main reason for this is that the PMDK allocator used by
Clevel does not perform well for allocation and thread counts above the core count. While the comparison is not
apple-to-apple, we can at least deduce that Clevel-mmt’s detectability introduces only modest overhead for most
combinations of thread counts, workloads, and key distributions.

3.7 Related and Future Work

Detectable Lock-Free DSs in PM Attiya et al. [2022] propose transforming lock-free DRAM-based DSs into

48



PM-based ones by persistently tracking an operation’s progress and necessary completion information in its
operation descriptor in PM. They assume each DS operation on the DS can be split into load-only gather and
CAS-only update phases. However, this efficient approach is limited to specific operations that can be split in
this manner and cannot handle complex operations with interleaved loads, CASes, or control constructs such as
conditional branches and loops. Additionally, their approach performs a PM flush to reset an operation descriptor
before reuse, while Memento directly overwrites mementos without resetting, utilizing timestamps.

Ben-David et al. [2019] checkpoint program points and local variables to record an operation’s progress
and result. However, their approach has two limitations. First, it makes unrealistic system assumptions to
recover the execution context from the checkpointed values correctly, such as the persistence of the OS page
table and maintaining the same virtual address space upon recovery. These assumptions are not satisfied by
Linux, which is typically used for PM deployments. Moreover, their method requires the number of each stack
frame’s persisted local variables to be less than a machine word’s bitwidth to atomically update the validity of the
local variables, limiting its applicability to complex operations in file systems and DBMS. Second, their approach
must checkpoint program points around CASes and after branches, causing noticeable performance overhead,
especially in write-heavy workloads, as shown in §3.6.

Friedman et al. [2018] and Li and Golab [2021] present detectable MSQs in PM, but both have a bug on
reclamation (§3.5.1) and perform slower than our MSQ due to an additional flush (§3.6).

Rusanovsky et al. [2021] and Fatourou et al. [2022] present hand-tuned persistent combining DSs based
on a general combiner. However, their DSs only support a single invocation for each operation (§3.5): their
DSs use a fixed per-thread PM storage to track the progress of a thread’s operation, and in our experience of
implementing CombQ-mmt, storing the results of multiple invocations requires a sizeable restructuring of the
algorithms. Furthermore, their methods require additional DS logic, requiring deep understanding: e.g. the
combining queue of Fatourou et al. [2022] has extra synchronization that prevents dequeuing of elements that are
enqueued but not yet persisted. By contrast, our type system applies to general programs with control constructs
(Fig. 3.2) and automatically guarantees the detectability of well-typed programs (Theorem 3.3.1).

Undetectable Lock-Free DSs in PM Friedman et al. [2018] present an undetectable lock-free MSQ in PM.
Our detectable MSQ outperforms theirs because their dequeue operation allocates a PM block to store the return
value (§3.6). Various hash tables [Nam et al. 2019; Zuo et al. 2018; Chen et al. 2020; Zuriel et al. 2019; Lu et al.
2020; Lee et al. 2019] and trees [Arulraj et al. 2018; Kim et al. 2021b] in PM have been proposed in the literature.
In this dissertation, we convert the Clevel [Chen et al. 2020] hash table to a detectable one as a case study because
it is lock-free. Converting the others to detectable DSs is an interesting direction for future work.

Transformation of DSs from DRAM to PM Izraelevitz et al. [2016b] present a universal construction of
lock-free DSs in PM, but the constructed DSs are generally slow [Friedman et al. 2020, 2021]. Lee et al. [2019]
propose a RECIPE to convert indexes from DRAM to PM and Kim et al. [2021b] propose the Packed Asynchronous
Concurrency guideline to construct high-performance persistent DSs in PM, but their approaches are abstract,
high-level, and not immediately applicable to DSs in general. By contrast, our rules of composition provide a
more concrete guideline at the code level.

NVTraverse [Friedman et al. 2020] is a systematic transformation of persistent DSs, exploiting an observation
that most operations comprise two phases: read-only traversal (which does not require flushes) and critical
modification. Mirror [Friedman et al. 2021] is a more general and efficient transformation that replicates DSs in
PM and DRAM, significantly improving read performance. FliT [Wei et al. 2022] is a persistent DS library based
on a transformation utilizing dirty cache line tracking. However, none of these works support the transformation
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of detectable DSs.

Detectability Friedman et al. [2018]; Li and Golab [2021]; Attiya et al. [2018, 2022] define detectability as
thread’s ability to detect the DS operation’s progress of a pre-crash execution and resume thereafter. We formalize
this property as a deterministic replay of thread executions (Theorem 3.3.2) and instead define detectability as
failure transparency of machine’s behaviours under crashes, and generally prove the detectability of well-typed
programs (Theorem 3.3.1).

PM Platforms Memento applies not only to Intel Optane persistent memory [Intel 2024b] (with and without
eADR [Intel 2021]) but also to other PM platforms, such as Samsung’s CMM-H [Samsung 2024], because they all
provide the following features thatMemento relies on: direct access via mmap and fine-grained data transfer.
Intel’s PMDK [Intel 2024d] maps persistent memory to virtual memory via mmap to support direct memory
access [Intel 2023], while Samsung’s SMDK supports the CXL.mem interface [Samsung 2022] that serves the
same purpose. Furthermore, both Intel Optane persistent memory and Samsung CMM-H’s CXL.mem interface
transfer data at the cache line granularity [Blankenship 2020].

Future Work (1) We will design larger objects (e.g. file systems and storage engines) in Memento (see §4.2.1).
(2) In doing so, we will adapt existing hand-tuned detectable concurrent DSs and persistent transactional memory
(PTM) systems [Memaripour et al. 2017; Krishnan et al. 2020] to Memento to compose them into larger objects.
(3) We will formalize our type system and verify the detectability of well-typed programs in logics for PM [Raad
et al. 2020; Vindum and Birkedal 2023]. (4) We will reason about the invariant-based optimizations to verify
MSQ-mmt-O2 by composing the type-based automatic verification of MSQ-mmt-O1 and manual verification of
the invariant-based optimization.
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Chapter 4. Conclusion

4.1 Summary

As shown in Fig. 4.1, this dissertation presents principles of byte-addressable persistency, particularly in the
context of PM. It focuses on two primary contributions: the development of hardware semantic models (§2) and a
general programming model for detectably recoverable concurrent data structures (§3).

Hardware Semantic Models To provide a formal foundation for addressing the complexities of relaxed
persistency, we introduced hardware semantic models, Px86view (§2.3) and PArmv8view (§2.6.2), for the Intel-x86
and Armv8 architectures, respectively. Px86view and PArmv8view were developed using view-based semantics,
providing a unified operational style for describing persistency. Additionally, we developed axiomatic models,
Px86axiom (§2.4.4) and PArmv8axiom (§2.6.3), and in doing so, identified and fixed bugs in the existing models.
For Px86 [Raad et al. 2019b], we ensured that flush instructions behave synchronously, preventing potential
post-crash inconsistencies when external operations are involved (§2.2.1). For PArmv8 [Raad et al. 2019a], we
addressed the non-MCA behavior by enforcing an order between a flush and a subsequent write on the same
location (§2.2.2). We formally proved the equivalence between the view-based and fixed axiomatic models for
both architectures (§2.5 and §2.6.4), ensuring the soundness of our models. Furthermore, we developed a stateless
model checker for persistency by adapting PArmv8view to RMEM [Armstrong et al. 2019] and used it to verify
several representative examples (§2.7), demonstrating the practical applicability of our models.

A General Programming Model To ensure crash-consistent and efficient programming in PM, we introduced
a general programming model for detectably recoverable concurrent data structures, Memento. Memento
supports primitive operations like detectable checkpoint (§3.4.2) and CAS (§3.4.3), integrated with standard
control constructs such as sequential composition, conditionals, and loops (§3.2). Memento is underpinned by a
core language and type system specifically tailored for PM, and we verified the soundness of Memento’s type
system, demonstrating that well-typed programs are detectably recoverable (§3.3). Furthermore, we utilized
Memento to transform volatile concurrent data structures into their detectable counterparts suitable for PM
(§3.5), which include a lock-free linked-list, Treiber stack, Michael-Scott queue, combining queue, and Clevel
hash table. Our evaluations demonstrated thatMemento’s primitive operations and data structures based on
Memento can recover effectively from random thread and system crashes (§3.6.1), performing comparably to
existing hand-tuned persistent data structures (§3.6.2). These results highlight the robustness and efficiency of
our general programming model, providing a solid foundation for future development in PM systems.

4.2 Future Work

We believe that our contributions will serve as a stepping stone for future research in PM systems, providing
a formal foundation for byte-addressable persistency. As shown in Fig. 4.1, we propose specific tasks for the
future works based on this dissertation: the development of a lock-free file system as a large-scale application of
Memento (§4.2.1), and the formal verification of primitive operations presented in Memento (§4.2.2).
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Figure 4.1: Our contributions (in black) and future work (in gray).

4.2.1 A Lock-Free File System as a High-Level Application

Our first future work is to develop the first lock-free file system on top of PM as a high-level application.
This will serve as a proof of concept, showcasing the potential performance gains and crash safety that lock-free
concurrency can offer in PM-based storage systems. Although several file systems in PM have already been
presented [Xu and Swanson 2016; Kwon et al. 2017; Chen et al. 2021], to the best of our knowledge, none of them
exploit the potential of lock-free concurrency. By developing a lock-free file system, we can demonstrate the
potential performance of lock-free storage systems, which has not yet been fully realized.

Memento can be used to develop a lock-free file system, since it is expressive enough to support high-level
applications by supporting control constructs for general programming, as well as the detectable CAS primitive
operation for lock-free programming in PM. In addition toMemento’s expressiveness, we can develop a PM-based
crash-safe application in a correct-by-construction way, thanks to its verified type system.

To achieve this, we set the following tasks: (1) we design the high-level of file system based onMemento;
and (2) devise a more robust safe memory reclamation strategy which is a key component of lock-free pro-
grams [Michael 2004] for the file system. By evaluating the performance of the file system in comparison
with existing PM-based file systems, We expect this work will not only further showcase the versatility and
effectiveness of the Memento framework in the context of high-level applications, but also impact the design of
future PM-based lock-free storage systems.

4.2.2 Formal Verification of Memento Primitive Operations

To complete end-to-end verification from PM to high-level applications, we formlly define hardware semantic
models (§2), then validate the soundness of type system for lock-free programs in PM (§3), and finally, thanks to
Memento, build a high-level application in a correct-by-construction way (§4.2.1). Our second future work is to
enhance the verification process of Memento for greater reliability.

Although we have demonstrated the soundness of Memento’s type system, there remain challenges in
enhancing the verification process for greater reliability. For example, the primitive operations of Memento,
chkpt and pcas, have not yet been verified for correctness. For high-level verification of the type system, the
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original proof assumes that the implementations of primitive operations refine the corresponding specifications.
To make the proof more reliable, this assumption should be replaced with a formal proof, particularly when
reasoning about shared memory operations based on underlying weak concurrency and persistency.

To address the issue, we plan to design a program logic for verifying the correctness of primitive operations,
based on our formal semantic model, Px86view. To this end, we set the following tasks: (1) extend the Iris
framework [Iris 2024], a higher-order concurrent separation logic framework, to incorporate weak persistency;
and building upon this foundation, (2) prove that the primitive operations refine the corresponding semantics
described in §B.4. For all the proofs included in this verification, we intend to mechanize the entire proof using
the Coq [Coq 2024] proof assistant.
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Chapter A. Appendices of §2

A.1 Full Model of Px86view

A.1.1 Language

Fig. A.1 presents the language for Intel-x86 concurrency and persistency. The language is explained in §2.3.1.

A.1.2 States and Transitions

Fig. A.2 presents the states of Px86view and x86view.
Fig. A.3 presents the transitions of Px86view and x86view. We get this figure by putting Fig. 2.4, Fig. 2.5, and

Fig. 2.6 in one figure and simplifying redundant rules.

A.2 Full Model of PArmv8view

A.2.1 Language

Fig. A.4 presents the language for Armv8 concurrency and persistency. It is similar to that for Intel-x86
(Fig. A.1), the differences being:

• Loads and stores are annotated with access ordering (“rk” or “wk”, resp.) and exclusivity (“xcl”).

• Fences are more diverse: isb orders loads and succeeding dependent accesses; dmb.f orders accesses according
to the ordering constraint f ; and dsb.f additionally waits for the pending flush instructions to finish.

• Armv8 has only asynchronous flush flushopt (dc.cvap).

A.2.2 States and Transitions for Armv8view [Pulte et al. 2019]

We review Armv8view due to [Pulte et al. 2019]: a view-based model for Armv8 concurrency. We first explain
the key differences from x86view including the semantics of the above-mentioned features; we refer to [Pulte et al.
2019] for the full detail. In doing so we gradually introduce the components of a thread state presented in Fig. A.5.
Then we present the full model.

Relaxed Access Ordering Unlike Intel-x86, Armv8 does not order accesses unless specified otherwise. To
capture the relaxedness, we introduce the following view components to thread states: (1) vrOld that represents the
maximum timestamp previously read by the thread; (2) vwOld that represents the maximum timestamp previously
written by the thread; (3) vrNew that forbids the thread’s future reads from accessing messages overwritten by
itself; and (4) vwNew that forbids the thread’s future writes from writing messages earlier than itself. Recall that
vrNew in x86view also represents the maximum timestamp previously read by the thread; its role is split to vrOld

and vrNew in Armv8view. Thus, e.g. a read does not automatically constrain the succeeding reads.
There are two ways to order the accesses: fence and access ordering. Fence joins the “old” views (vrOld and

vwOld) to the “new” views (vrNew and vwNew), thereby forcing the messages read or written by the thread in the
past, to be earlier than those read or written in the future. Specifically, dmb.ld joins vrOld to each of vrNew and
vwNew; dmb.st, vwOld to vwNew; and dmb.st, vrOld ⊔ vwOld to each of vrNew and vwNew.
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p ::= s1 || . . . || sn program

s ∈ Stmt ::= skip statement

| s1; s2 | if e then s1 else s2 | while (e) s control

| r := e assign

| r := pload(e) load

| store [e1 ] e2 store

| r := rmw rop [e] update

| fencef fence

| flush e | flushopt e flush

rop ∈ Rmw ::= fetch-op op e | cas e1 e2 rmw op.

f ∈ F ::= sfence | mfence fence

e ∈ Expr ::= v | r | (e1 op e2) pure expr.

op ∈ O ::= + | − | . . . arith op.

v ∈ Val = Z value

r ∈ VReg = N register

l ∈ PLoc = Val location

Figure A.1: Intel-x86 concurrency and persistency language.

⟨T⃗ ,M⟩ ∈ Machine
△
= (TId → Thread)×Memory

tid ∈ TId
△
= N T ∈ Thread

△
= Stmt× TState

M ∈ Memory
△
= list Msg w ∈ Msg

△
= ⟨loc :PLoc; val :Val; tid :TId⟩

⟨l := v⟩tid
△
= ⟨loc= l; val=v; tid= tid⟩ t ∈ Time

△
= N v ∈ V △

= Time

ts ∈ TState
△
=

〈
σ : VReg → Val ;

coh : PLoc → V ; vrNew : V ;

vpReady : V ; vpAsync, vpCommit : PLoc → V ;

〉
Figure A.2: States of Px86view (and that of x86view if the highlighted area is removed).

Access ordering works similarly by joining new views. When a load is marked as wacq or acq it is ordered
with succeeding accesses, and when a store is marked as wrel and rel it is ordered with preceding accesses. Also,
a rel store and a succeeding acq are also ordered. For this purpose, Armv8view introduces the vRel view that
represents the maximum timestamp of previous rel stores.

Exclusive Instruction instead of RMW Armv8 supports exclusive load-link and store-conditional [Jensen
et al. 1987] that guarantee, when successful, there are no intervening stores between the load and the store. The
return value of an exclusive store (“rsucc”) indicates if the instruction is successful. Exclusive instructions are
more primitive than RMWs in that an RMW can be implemented on top of them.1

The semantics of exclusive loads and stores are similar to that for RMWs except that the information on the
“linked” load is stored in a thread state’s exclusivity bank (ts.xclb). Also, Armv8 forbids forwarding of exclusive

1While Armv8.1 also supports RMW instructions, they are currently missing in Armv8view [Pulte et al. 2019]. We do not generalize
Armv8view to support RMW instructions because it is orthogonal to our purpose.
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c ? v1 : v2
△
= if c then v1 else v2 c ? v

△
= c ? v : 0 v1 ⊔ v2

△
= max(v1, v2)

(init)

p = s1 || . . . || sn

init(p, ⟨λtid . ⟨stid , ⟨σ = λ_. 0; coh = λ_. @0; vrNew = @0; vpReady = @0; vpAsync, vpCommit = λ_. @0;⟩⟩, []⟩)

(machine)

T⃗ [tid ],M →tid T ′,M ′

⟨T⃗ ,M⟩ → ⟨T⃗ [tid 7→ T ′],M ′⟩

(skip)

(skip; s, ts),M →tid (s, ts),M

(assign)

ts′ = ts[σ[r] 7→ JeKts.σ ]

(r := e, ts),M →tid (skip, ts′),M

(branch)

JeKts.σ = v

(if e then s1 else s2 , ts),M →tid (v ̸= 0 ? s1 : s2, ts),M

(while)

s′ = if e then (s; while (e) s) else skip

(while (e) s, ts),M →tid (s′, ts′),M

(seq)

(s1, ts),M →tid (s′1, ts
′),M ′

(s1; s2, ts),M →tid (s′1; s2, ts
′),M ′

(not-overwritten)

∀t ∈ (v2, v1]. M [t].loc ̸= l

v1 ⊑M,l v2

(store)

l = Je1Kts.σ v = Je2Kts.σ
t = |M |+ 1 M ′ = M ++ [⟨l := v⟩tid@t]

ts′ = ts
[
coh[l] 7→ t

]
(store [e1] e2, ts),M →tid (skip, ts′),M ′

(load)

l = JeKts.σ M [t] = ⟨l := v⟩
ts.coh[l] ⊑ t ts.vrNew ⊑M,l t

v = t ̸= ts.coh[l] ? t

ts′ = ts


σ[r] 7→ v,

coh[l] 7→ t,

vrNew 7→⊔ v ,

vpReady 7→⊔ v


(r := pload(e), ts),M →tid (skip, ts′),M

(rmw)

JropKts.σ(v1, v2)
l = JeKts.σ M [t1] = ⟨l := v1⟩
t2 = |M |+ 1 t2 − 1 ⊑M,l t1

M ′ = M ++ [⟨l := v2⟩tid@t2]

ts′ = ts


σ[r] 7→ v1,

coh[l] 7→ t2,

vrNew 7→⊔ t2,

vpReady 7→⊔ t2,

vpCommit 7→⊔ ts.vpAsync


(r := rmw rop [e], ts),M →tid (skip, ts′),M ′

(rmw-fail)

JropKts.σ(v,⊥)

l = JeKts.σ M [t] = ⟨l := v⟩
ts.coh[l] ⊑ t ts.vrNew ⊑M,l t

v = t ̸= ts.coh[l] ? t

ts′ = ts


σ[r] 7→ v,

coh[l] 7→ t,

vrNew 7→⊔ v ,

vpReady 7→⊔ v


(r := rmw rop [e], ts),M →tid (skip, ts′),M

(mfence)

ts′ = ts

vrNew 7→⊔ ⊔l ts.coh[l],

vpReady 7→⊔ ⊔l ts.coh[l],

vpCommit 7→⊔ ts.vpAsync


(mfence, ts),M →tid (skip, ts′),M

(sfence)

ts′ = ts

[
vpReady 7→⊔ ⊔l ts.coh[l],

vpCommit 7→⊔ ts.vpAsync

]
(sfence, ts),M →tid (skip, ts′),M

(flush)

l = JeKts.σ v = ⊔l′ ts.coh[l
′]

ts′ = ts

[
vpAsync 7→⊔ λl′. cl(l, l′) ? v ,

vpCommit 7→⊔ λl′. cl(l, l′) ? v

]
(flush e, ts),M →tid (skip, ts′),M

(flushopt)

l = JeKts.σ v = ⊔l′ cl(l, l
′) ? ts.coh[l′]

ts′ = ts
[
vpAsync 7→⊔ λl′. cl(l, l′) ? (v ⊔ ts.vpReady)

]
(flushopt e, ts),M →tid (skip, ts′),M

(crash)

∀l. ∃t. M [t] = ⟨l := SM [l]⟩ ∧ ∀(_, ts) ∈ T⃗ . ts.vpCommit[l] ⊑M,l t

⟨T⃗ ,M⟩ →crash SM

Figure A.3: Transitions of Px86view (and those of x86view if the highlighted area is removed).
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. . . (based on the language for Intel-x86 in Fig. A.1)

s ∈ Stmt ::= · · · statement

| r := loadxcl,rk [e] load

| rsucc := storexcl,wk [e1 ] e2 store

| isb | dmb.f | dsb.f fence

| flushopt e flush

f ∈ F ::= ld | st | sy order

xcl ∈ B ::= false | true exclusivity

rk ∈ RK ::= pln | wacq | acq read kind

wk ∈ WK ::= pln | wrel | rel write kind

Figure A.4: Armv8 concurrency and persistency language.

. . . (based on the states for Intel-x86 in Fig. A.2)

ts ∈ TState
△
=

〈
σ : VReg → Val× V ; prom : set Time ;

coh : PLoc → V ;

vrOld, vwOld, vrNew, vwNew, vRel, vCAP : V ;

fwdb : PLoc → ⟨time : Time; view : V;mem : B⟩;
xclb : option ⟨time : Time; view : V⟩
vpReady : V ; vpAsync, vpCommit : PLoc → V ;

〉
Figure A.5: States of PArmv8view (and that of Armv8view [Pulte et al. 2019] if the highlighted area is removed).

stores to wacq loads. To model this, we introduce forward bank (ts.fwdb) that describes forwardable stores.

Dependency Unlike Intel-x86, Armv8 tracks control, address, and data dependency to order a load and
succeeding dependent instructions. To this end, a thread state (ts.σ) not only contains a value for each register
but also a view that represents the dependency carried by the register. When a register is used as branch condition
or address, its view is joined to the thread’s control-address-program-order view (ts.vCAP) that constrains future
stores. It is also joined to vrNew when an isb fence is executed, thus starting to constrain future loads as well.

Full Model Fig. A.6 and Fig. A.7 present the transitions of Armv8view.

A.2.3 States and Transitions for PArmv8view

Fig. A.6 and Fig. A.7 also present the transitions of PArmv8view. The differences between PArmv8view and
Armv8view, which are highlighted in the figures, are largely the same with those between Px86view and x86view.

A.3 Proof of the Optionality of (pf-min) in Px86axiom and PArmv8axiom

We prove that the (pf-min) axiom is optional in Px86axiom. More specifically, a behavior is allowed under
Px86axiom with (pf-min) iff it is allowed under Px86axiom without (pf-min).

Proof of Theorem 2.4.2. (⇒) Obvious from the fact that the axioms are weakened.
(⇐) Suppose a behavior satisfies the old axioms.
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v@v
△
= ⟨v, v⟩ : Val× V

(init)

p = s1 || . . . || sn

init(p, ⟨λtid . ⟨stid ,

〈
σ = λ_. 0@0; coh = λ_. @0; vrOld, vwOld, vrNew, vwNew, vCAP, vRel = @0;

fwdb = λ_. ⟨time = @0; view = @0;mem = false⟩; xclb = none

vpReady = @0; vpAsync, vpCommit = λ_. @0;

〉
⟩, []⟩)

(machine)

T⃗ [tid ],M →tid T ′,M ′ ⟨T ′,M ′⟩ certified

⟨T⃗ ,M⟩ → ⟨T⃗ [tid 7→ T ′],M ′⟩

⟨T,M⟩ certified △
= ∃T ′,M ′.

⟨T,M⟩seq−→∗
tid⟨T ′,M ′⟩ ∧

T ′.prom = {}

(seq-exec)

T,M →tid T ′

⟨T,M⟩seq−→tid⟨T ′,M⟩

(seq-write)

⟨T,M⟩ tid−−→a t ⟨T ′,M ′⟩ T ′,M ′ tid−−→a t T ′′

⟨T,M⟩seq−→tid⟨T ′′,M ′⟩

(execute)

T,M →tid T ′

⟨T,M⟩ →tid ⟨T ′,M⟩

(promise)

w.tid = tid t = |M |+ 1 M ′ = M ++ [w]

ts ′ = ts[prom 7→ ts.prom ∪ {t}]

⟨(s, ts),M⟩ tid−−→a t ⟨(s, ts ′),M ′⟩

(crash)

∀(_, ts) ∈ T⃗ . ts.prom = {}
∀l. ∃t. M [t] = ⟨l := SM [l]⟩ ∧ ∀(_, ts) ∈ T⃗ . ts.vpCommit[l] ⊑M,l t

⟨T⃗ ,M⟩ →crash SM

Figure A.6: Machine and thread steps of PArmv8view (and those of Armv8view [Pulte et al. 2019] if the
highlighted area is removed).

We may assume:

obw,f = obs ∪ dob ∪ bob ∪ fob ∪ (pf \ {(w, f)}) ∪ fp

∀(w, f) ∈ pf, (w, f) ∈ ob+w,f (pf-min0)

Suppose otherwise, and let (w, f) ∈ pf \ ob+w,f . Let w′ be the store event just before w w.r.t. co, and
pf′ = pf ∪ {(w′, f)} \ {(w, f)}. Then pf′ also satisfies the old axioms. In particular, if there is a cycle of
ob′ = obw,f ∪ {(w′, f), (f, w)} ⊆ ob ∪ {(f, w)}, then it should contain the edge (f, w) and thus (w, f) ∈
(obw,f ∪ {(w′, f)})+. If such a trace contains (w′, f), then we have (w,w′) ∈ ob+w,f , contradicting the acyclicity
of ob. Thus we have (w, f) ∈ ob+w,f , contradicting the assumption. Now by repeatedly moving pf “backwards”
w.r.t. co, we get a behavior that satisfies (pf-min0).

Let ob0 = obs∪ dob∪ bob∪ fob∪ fp and we prove pf ⊆ ob0+. Suppose otherwise. We linearize events w.r.t.
ob, and to each event e, give the linearization index L(e), and let (w, f) ∈ pf \ ob0+ be such a pair of events with
the minimum number of L(f)− L(w). Since (w, f) ∈ ob+w,f , such a trace contains an edge in pf \ {(w, f)}. By
the minimality of L(f)− L(w), such an edge is also contained in ob0+ and thus (w, f) ∈ ob0+, contradicting
the assumption.

The same proof applies also to PArmv8axiom.
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J(−)1K(−)2 : Expr → (VReg → Val× V) → Val× V

JvKm
△
=v@0 JrKm

△
=m(r) Je1 op e2Km

△
=(v1 JopKv2)@(v1⊔v2) with Je1Km=v1@v1, Je2Km=v2@v2

read(M, l, t) : option Val
△
= if t = 0 then vinit else if M [t].loc = l then M [t].val else none

read-view(rk , f, t)
△
= if (f.time = t ∧ (f.mem ⇒ rk ⊑ pln)) then f.view else t

atomic(M, l, tid , tr, tw)
△
= M(tr).loc = l =⇒ ∀t′. (tr<t′<tw ∧M [t′].loc = l) =⇒ M [t′].tid = tid

(exclusive-failure)

xcl = true ts′ = ts[σ[r] 7→ v, xclb 7→ none]

(rsucc := storexcl,wk[e1 ]e2 , ts),M →tid (skip, ts′)

(load)

l@vaddr = JeKts.σ
read(M, l, t) = v

vpre = vaddr ⊔ ts.vrNew ⊔ (rk ⊒ acq ? ts.vRel)

∀t′. t<t′≤(vpre⊔ts.coh(l)) =⇒ M [t′].loc ̸= l

vpost = vpre ⊔ read-view(rk , ts.fwdb(l), t)

ts′= ts



σ(r) 7→ v@vpost,

coh(l) 7→⊔ vpost,

vrOld 7→⊔ vpost,

vrNew 7→⊔ rk ⊒ wacq ? vpost,

vwNew 7→⊔ rk ⊒ wacq ? vpost,

vCAP 7→⊔ vaddr,

xclb 7→ xcl ? ⟨time = t; view = vpost⟩ : ts.xclb


(r := loadxcl,rk [e], ts),M →tid (skip, ts′)

(fulfil)

Je1Kts.σ = l@vaddr Je2Kts.σ = v@vdata

xcl =⇒ ts.xclb ̸=none ∧ atomic(M,l,tid ,ts.xclb.time,t)

t ∈ ts.prom M [t] = ⟨l := v⟩tid
vpre = vaddr ⊔ vdata ⊔ ts.vwNew ⊔ ts.vCAP ⊔

(wk ⊒ wrel ? (ts.vrOld ⊔ ts.vwOld))

(vpre ⊔ ts.coh(l)) < t

vpost = t vsucc = ⊥

ts′= ts



prom 7→ ts.prom \ {t},
σ(rsucc) 7→ xcl ? vsucc@vsucc : ts.σ(rsucc),

coh(l) 7→⊔ vpost,

vwOld 7→⊔ vpost,

vCAP 7→⊔ vaddr,

vRel 7→⊔ wk ⊒ rel ? vpost,

fwdb(l) 7→⟨time= t; view=vaddr⊔vdata;mem=xcl⟩
xclb 7→ xcl ? none : ts.xclb


(rsucc := storexcl,wk [e1 ] e2 , ts),M

tid−−→a t (skip, ts′)

(dmb)

ts′ = ts

vrNew 7→⊔ (f = sy ∨ f = ld ? ts.vrOld) ⊔ (f = sy ? ts.vwOld),

vwNew 7→⊔ (f = sy ∨ f = ld ? ts.vrOld) ⊔ (f = sy ∨ f = st ? ts.vwOld),

vpReady 7→⊔ f = sy ? (ts.vrOld ⊔ ts.vwOld)


(dmb.f , ts),M →tid (skip, ts′)

(dsb)

ts′ = ts


vrNew 7→⊔ (f = sy ∨ f = ld ? ts.vrOld) ⊔ (f = sy ? ts.vwOld),

vwNew 7→⊔ (f = sy ∨ f = ld ? ts.vrOld) ⊔ (f = sy ∨ f = st ? ts.vwOld),

vpReady 7→⊔ f = sy ? (ts.vrOld ⊔ ts.vwOld),

vpCommit 7→⊔ ts.vpAsync


(dsb.f , ts),M →tid (skip, ts′)

(isb)

ts′ = ts [vrNew 7→⊔ ts.vCAP]

(isb, ts),M →tid (skip, ts′)

(assign)

ts′ = ts[σ(r) 7→ JeKts.σ ]

(r := e, ts),M →tid (skip, ts′)

(branch)

JeKts.σ = v@v ts′ = ts[vCAP 7→⊔ v ]

(if e then s1 else s2 , ts),M →tid (v ̸= 0 ? s1 : s2, ts
′)

(skip)

(skip; s, ts),M →tid (s, ts)

(seq)

(s1, ts),M →tid (s′1, ts
′)

(s1; s2, ts),M →tid (s′1; s2, ts
′)

(while)

s′ = if e then (s; while (e) s) else skip

(while (e) s, ts),M →tid (s′, ts′)

(flushopt)

l@_ = JeKts.σ v = ⊔l′ cl(l, l
′) ? ts.coh[l′]

ts′ = ts
[
vpAsync 7→⊔ λl′. cl(l, l′) ? (v ⊔ ts.vpReady)

]
(flushopt e, ts),M →tid (skip, ts′)

Figure A.7: Thread-local steps of PArmv8view (and that of Armv8view [Pulte et al. 2019] if the highlighted area is
removed).
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tso is transitive and irreflexive (tso-strict)

tso is total on E \R (tso-total)

co ⊆ tso (tso-co)

rf ⊆ tso ∪ po (tso-rf1)

∀x ∈ Loc, ∀(w, r) ∈ rfx, ∀w′ ∈ Wx ∪ Ux,

(w′, r) ∈ tso ∪ po =⇒ (w,w′) /∈ tso (tso-rf2)

([W ∪ U ∪R]; po; [W ∪ U ∪R]) \ (W ×R) ⊆ tso (tso-po)

([E]; po; [MF ]) ∪ ([MF ]; po; [E]) ⊆ tso (tso-mf)

Figure A.8: The x86man model [Raad et al. 2019b, Definition 4].

A.4 Proof of the Equivalence of SPx86 and Px86axiom

A.4.1 SPx86

Fig. A.8 presents x86man, the authoritative axiomatic model of Intel-x86 concurrency due to [Owens et al.
2009; Sewell et al. 2010] that is reviewed by Intel engineers. Fig. A.9 presents the (S)Px86 model [Raad et al. 2019b].
Px86 and SPx86 are the same except that SPx86 additionally enforces (sync-fl). While not explicit in [Raad et al.
2019b], we require the (persist) axiom that governs the contents of PM after crash.

A.4.2 Equivalence of x86man and x86axiom

Proof of Theorem 2.4.4. We prove the equivalence by continuously transforming x86man into an equivalent
one until reaching x86axiom.

(1) We replace (tso-rf1) with a simpler condition:

rf ⊆ tso ∪ po (tso-rf1)

⇔ rf \ po ⊆ tso

⇔ (rfe ⊆ tso) ∧ (rfi \ po ⊆ tso)

⇔ (rfe ⊆ tso) ∧ (rf; po? irreflexive) ,

where the forward direction of the last equivalence holds because otherwise, if (w, r) ∈ rf and (r, w) ∈ po?,
then (w, r) ∈ rfi \ po ⊆ tso and (r, w) ∈ [U ∪ R]; po?; [W ∪ U ] ⊆ tso? by (tso-po), contradicting the
irreflexivity of tso.

(2) We replace (tso-rf2) with a simpler condition:

∀x ∈ Loc, ∀(w, r) ∈ rfx, ∀w′ ∈ Wx ∪ Ux, (w
′, r) ∈ tso ∪ po =⇒ (w,w′) /∈ tso (tso-rf2)

⇔ rf−1; (tso ∩ Loc); [W ∪ U ]; (tso ∪ po) irreflexive

⇔ rf−1; co; (tso ∪ po) irreflexive

⇔ (fr; tso irreflexive) ∧ (fr; po irreflexive) ,
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(axioms of x86man (Fig. A.8))

tso ⊇ ([E]; po; [SF ]) ∪ ([SF ]; po; [E \R]) (x86-tso-fl)

∪ [W ∪ U ∪ FL]; po; [FL]

∪ [FL]; po; [W ∪ U ∪ FL]

∪ [FL]; (po ∩ CL); [FO]

∪ [FO]; (po ∩ CL); [FL]

∪ ([U ]; po; [FO]) ∪ ([FO]; po; [U ])

∪ [W ]; (po ∩ CL); [FO]

∪ [R]; po; [FL ∪ FO]

nvo ⊇ tso ∩ Loc (nvo-order)

∪ [W ∪ U ]; (tso ∩ CL); [FL ∪ FO]

∪ [FL ∪ FO]; tso; [W ∪ U ∪ FL ∪ FO]

nvo is total onW ∪ U ∪ FL ∪ FO (nvo-total)

P ⊇ dom(nvo; [P ]) (nvo-p)

P ⊇ dom([FL] ∪ ([FO]; po; [MF ∪ SF ∪ U ])) (sync-fl)

∀l. ∃w. SM(l) = wval(w) ∧ (P × {w}) ∩ Loc ⊆ co? (persist)

Figure A.9: (S)Px86 [Raad et al. 2019b].

where the second equivalence holds from:

[W ∪ U ]; (tso ∩ Loc); [W ∪ U ]

= tso ∩ (co ∪ co−1 ∪ [W ∪ U ])

= co ∪ (tso ∩ (co−1 ∪ [W ∪ U ]))

= co ,

since (co−1 ∪ [W ∪ U ]) ⊆ tso−1? and tso is acyclic.

(3) We simplify (fr; tso irreflexive) to fre ⊆ tso.

(⇐) Since fr; po is irreflexive, we have fri ⊆ [U ∪R]; po?; [W ∪ U ] ⊆ tso?, and thus fr ⊆ tso? and fr; tso is
irreflexive from the acyclicity of tso.

(⇒) Without loss of generality, assume tso is minimal such a relation that satisfies all the axioms. Let
tso′ = (tso ∪ fre)+. Then tso′ satisfies all the other axioms except for (fr; tso irreflexive), and in addition,
fre ⊆ tso′.

It remains to prove the acyclicity of tso′. Assume otherwise and let c be a cycle of tso ∪ fre. Then c

should be tso+, fre+, or (fre+; tso+)+. But the first case is impossible from the acyclicity of tso; the second
case is impossible because then c is co+ and thus tso+; and the third case is also impossible as follows.
Since fre+; tso+ ⊆ fre; co?; tso+ ⊆ fre; tso, c is also (fre; tso)+. Since fr ⊆ [U ∪ R] × [W ∪ U ], c is also
(fre; tso; [U ∪ R])+. By the minimality of tso, we have tso; [U ∪ R] ⊆ tso?; (co ∪ rfe ∪ [MF ]; po); [U ∪ R]

and c is also (tso?; (co ∪ rfe ∪ [MF ]; po); fre)+. Without loss of generality, assume c is minimal such a cycle.
If there is an edge of tso?; (co ∪ rfe); fre, then it is also tso?; co+ ⊆ tso so that it can be merged into the next
edge, contradicting the minimality of c. Thus c is also ([MF ]; po; fre; tso?)+. If c has two distinct vertices,

62



say v1, v2, then either (v1, v2) ∈ tso or (v2, v1) ∈ tso, and either the trace from v1 to v2 or that from v2 to v1
can be merged into the previous edge, contradicting the minimality of c. Thus we have a vertex v such that
(v, v) ∈ [MF ]; po; fre; tso?, contradicting the irreflexivity of fr; tso.

(4) We replace (tso-mf) with [E]; po; [MF ]; po; [E] ⊆ tso and (tso-total) with (tso is total on E \ (R ∪MF )).

(⇒) Obvious from the fact that the condition is weakened.

(⇐) Let tso be minimal such a relation that satisfies the new axioms. Due to the minimality, tso does not relate
MF . Let tso′ = (tso ∪ ([E]; po; [MF ]) ∪ ([MF ]; po; [E]))+. We prove tso′ is acyclic. Suppose otherwise
and let c be a cycle of tso′. SinceMF is not related in tso, c is also a cycle of (tso ∪ ([E]; po; [MF ]; po; [E])).
Since [E]; po; [MF ]; po; [E] ⊆ tso, c is also a cycle of tso, contradicting the assumption. Now let tso′′ be an
acyclic superset of tso′ in which MF is linearized. Then tso′′ satisfies (tso-mf), (tso-total), and all the
other old axioms.

(5) We remove tso. Specifically, we replace the following axioms with the acyclicity of ob:

• tso is transitive and irreflexive;

• tso is total on E \ (R ∪MF ); and

• ob+ ⊆ tso .

We reached x86axiom, concluding the proof.

A.4.3 Equivalence of SPx86 and Px86axiom

Proof of Theorem 2.4.3. We prove the equivalence by continuously transforming SPx86 into an equivalent
one until reaching Px86axiom.

(1) We name each component of tso and remove fences from the relations. Specifically, (i) we replace x86man

with x86axiom; and (ii) replace (x86-tso-fl) with:

fob = [E]; po; [MF ]; po; [E]

∪ [E]; po; [SF ]; po; [E \R]

∪ ([W ∪ U ∪ FL]; po; [FL]) ∪ ([FL]; po; [W ∪ U ∪ FL])

∪ ([FL]; (po ∩ CL); [FO]) ∪ ([FO]; (po ∩ CL); [FL])

∪ ([U ]; po; [FO]) ∪ ([FO]; po; [U ])

∪ [W ]; (po ∩ CL); [FO]

∪ [R]; po; [FL ∪ FO]

ob = obs ∪ dob ∪ bob ∪ fob

tso ⊇ ob+ .

The old and new axioms are equivalent similarly with the proof of Theorem 2.4.4.

(2) We introduce to ob new relations, pf (“persist-from”) and fp (“from-persist”), where pf is meant to relate a
flush instruction to the co-maximal store that is flushed at that instruction; and fp is defined as pf−1; co. Like
rf for load instructions, pf relates a flush instruction to at most one store instruction for each location, the
key difference being that pf relates a flush instruction to a store for each location in the same cache line.
Specifically, we change the axioms as follows:

ob = obs ∪ dob ∪ bob ∪ fob ∪ pf ∪ fp
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(⇐) Obvious from the fact that the axioms are strengthened.

(⇒) Suppose a behavior satisfies the old axioms. Let pf0 = ((W ∪ U) × (FL ∪ FO)) ∩ CL ∩ tso, pf =
pf0 \ (co; pf0), and fp = pf−1; co. Then pf ∪ fp ⊆ tso by construction. Thus the behavior satisfies the new
axioms as well.

(3) We simplify (nvo-order) into:

nvo ⊇ co (nvo-co)

∪ pf ∪ fp (nvo-fobs)

∪ [FL ∪ FO]; tso; [FL ∪ FO] (nvo-fl)

(4) From now on, let PFO = dom([FO]; po; [MF ∪ SF ∪ U ]).

(5) We replace (nvo-order), (nvo-total), (nvo-p), and (nvo-pers) with the following axiom:

per = pf; tso?; [FL ∪ PFO] (per)

P ⊇ dom(per)

P ⊇ dom(co; [P ])

P ⊆ W ∪ U

(⇒) Suppose a behavior satisfies the old axioms. Let P ′ = P ∩ (W ∪ U). Thanks to (nvo-pers), (nvo-co),
and (nvo-fl), we have dom(per) ⊆ P ′. Thanks to (nvo-co), we have dom(co; [P ′]) ⊆ P ′. Since only writes
(inW ∪ U ) affect the contents of PM, the same behavior is also allowed in the new axioms.

(⇐) Suppose a behavior satisfies the new axioms. nvo1 be the RHS of (nvo-order), nvo2 = (dom(fp?;P ) ∪
FL ∪ PFO) × ((W ∪ U) \ P ), and nvoc = nvo1 ∪ nvo2. We prove nvoc is acyclic. If there is such
a cycle, then it should be a cycle of nvo1, nvo2, or nvo+1 ; nvo

+
2 . But the first case is impossible because

nvo1 ⊆ tso and tso is acyclic; the second case is impossible because its domain and codomain are disjoint;
and the third case is also impossible as follows. If there is a cycle of nvo+1 ; nvo

+
2 , then there is an edge

(a, b) ∈ nvo+1 ∩ nvo−1
2 = [(W ∪U) \ P ]; nvo+1 ; [dom(fp?;P ) ∪ FL ∪ PFO]. Without loss of generality, we

assume (a, b) is minimal such an arc of nvo+1 .

(i) Suppose (a, b) has no intermediate vertices, i.e. (a, b) ∈ nvo1. By case analysis on [(W ∪ U) \
P ]; nvo1; [dom(fp?;P ) ∪ FL ∪ PFO], we can derive contradiction.

(ii) Suppose (a, b) has an intermediate vertex, say c, of nvo+1 . Then c /∈ dom(nvo2) ∪ codom(nvo2) by the
minimality, and thus c ∈ FO \ PFO \ dom(fp;P ) and:

(a, b) ∈ [(W ∪ U) \ P ]; pf; [FO \ PFO \ dom(fp;P )]; tso?; [FO \ PFO \ dom(fp;P )];

((fp; [P ]) ∪ (tso; [FL ∪ PFO]))

= [(W ∪ U) \ P ]; pf; [FO \ PFO \ dom(fp;P )]; tso; [FL ∪ PFO]

Then we have a ∈ dom(per) ⊆ P , contradicting the assumption.

Now let nvo be an acyclic superset of nvoc in whichW ∪U∪FL∪FO is linearized, andP ′ = dom(nvo?; [P ∪
FL ∪ PFO]). Then nvo and P ′ satisfy the original axioms: (nvo-pers) by the definition of P ′; (nvo-co),
(nvo-fobs), and (nvo-fl) by nvo ⊇ nvo1; (nvo-total) by linearization; and (nvo-p) by the definition of P ′.

It remains to prove P ′ ∩ (W ∪ U) = P .
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(⊇) By the definition of P ′.

(⊆) Suppose w ∈ P ′ ∩ (W ∪ U). Then there exists e such that (w, e) ∈ nvo?; [P ∪ FL ∪ PFO]. If w /∈ P ,
then (e, w) ∈ nvo2 and thus (w,w) ∈ nvo+, contradicting the acyclicity of nvo. Thus w ∈ P .

(6) We replace (per), P ⊇ dom(per), P ⊇ dom(co; [P ]), and P ⊆ W ∪ U with the following axiom:

per = pf; tso?; [FL ∪ PFO] (per)

P = dom(per)

(⇒) Obvious from the fact that the axioms are weakened.

(⇐) Let P ′ = dom(co?;P ). Then P ′ and SM satisfies all the old axioms.

(7) We replace (per) with the following axiom:

per = pf; ([FL] ∪ ([FO]; ob∗; [FL ∪ PFO])) (per)

(⇒) Obvious from the fact that the axioms are weakened.

(⇐) Let PFO′ = dom([FO]; ob∗; [FL∪PFO]) and Y = (FL∪PFO′)× (FO \PFO′). We prove ob∪Y

is acyclic. If there is such a cycle, then it should be a cycle of ob, Y , or ob+;Y . But the first case is impossible
because ob ⊆ tso and tso is acyclic; the second case is impossible because its domain and codomain are
disjoint; and the third case is also impossible as follows. If there is a cycle of ob+;Y , then there is an edge
(a, b) ∈ ob+ ∩ Y −1 = [FO \ PFO′]; ob+; [FL ∪ PFO′]. Then a ∈ PFO′, contradicting the assumption.

Now let tso′ be a linearization of ob ∪ Y . Then if (a, b) ∈ [FL ∪ FO]; tso′; [FL ∪ PFO], then we have
a ∈ FL ∪ PFO′ because otherwise (b, a) ∈ Y ⊆ tso′, contradicting the acyclicity of tso′. Thus we have:

per′ = pf; tso′?; [FL ∪ PFO]

⊆ pf; [FL ∪ PFO′]

= per

As a result, tso′, per′, P ′, and SM satisfy the old axioms.

(8) We replace the irreflexivity of tso with the acyclicity of ob, and remove tso which is no longer used.

(9) We replace (per) with the following axiom:

per = pf; [FL ∪ PFO] (per)

(⇒) Obvious from the fact that the axioms are weakened.

(⇐) Let coimm = co \ (co; co), which represents the “immediate” coherence order.

We may assume:

∀w,w′, f. (w,w′) ∈ coimm, (w, f) ∈ pf, f ∈ FO \ PFO =⇒

(f, w′) ∈ (obs ∪ dob ∪ bob ∪ fob ∪ pf ∪ (fp \ {f} ×W ))+ .

Intuitively, it means f ∈ FO \PFO persists the co-latest posible store event. Suppose w,w′, f do not satisfy
the above statement. Let pf′ = pf \ {(w, f)} ∪ {(w′, f)}. Then pf′ satisfies the new axioms. In particular, if
there is a cycle of ob′, then it should contain the edge (w′, f) ∈ pf′, (f, w′) ∈ ob′+, and thus (f, w′) satisfies
the statement. Furthermore, P ′ = P because f /∈ FL ∪ PFO. Now by repeatedly moving pf “forwards”, we
get an execution in which the above statement is satisfied.
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Let FFO = dom([FO]; (po ∩ CL); [FL]) and Y = (FL ∪ PFO) × (FO \ PFO \ FFO). We prove
ob ∪ (FL ∪ PFO) × (FO \ PFO \ FFO) is acyclic. If there is such a cycle, then it should be a cycle of
ob, (FL ∪ PFO) × (FO \ PFO \ FFO), or ob+; (FL ∪ PFO) × (FO \ PFO \ FFO). But the first
case is impossible because ob is acyclic; the second case is impossible because its domain and codomain are
disjoint; and the third case is also impossible as follows. If there is such a cycle, then there is an edge (a, b) ∈
[FO\PFO\FFO]; ob+; [FL∪PFO]. By the assumption, we have (a, b) ∈ [FO\PFO\FFO]; (obs∪dob∪
bob∪ fob∪pf); co?; ob∗; [FL∪PFO]. By case analysis on [FO \PFO \FFO]; (obs∪dob∪bob∪ fob∪pf),
we can derive contradiction.

If (a, b) ∈ [FO]; ob∗; [FL ∪ PFO], then a ∈ PFO ∪ FFO because otherwise (b, a) ∈ Y , contradicting
the acyclicity of ob ∪ Y . Also, if (a, b) ∈ pf; [FO]; (po ∩ CL); [FL], then (a, b) ∈ co?; pf because otherwise
(b, a) ∈ fp ⊆ ob, contradicting the acyclicity of ob. Thus we have:

dom(per′) = dom(pf; ([FL] ∪ ([FO]; ob∗; [FL ∪ PFO])))

⊆ dom(pf; [FL ∪ PFO ∪ FFO])

= dom(pf; [FL ∪ PFO]) ∪ dom(pf; [FFO])

= dom(per) ∪ dom(pf; [FO]; (po ∩ CL); [FL])

⊆ dom(per) ∪ dom(co?; pf; [FL])

⊆ dom(co?; per)

As a result, tso′, per′, P ′, and SM satisfy the old axioms.

(10) We additionally require the following axiom:

ob0 = obs ∪ dob ∪ bob ∪ fob ∪ fp

pf ⊆ ob0+ (pf-min)

The proof is the same with that of Theorem 2.4.2 in §A.3.

(11) We refactor fob as follows:

fob = [FL]; po; ([W ∪ U ∪ FL] ∪ ([MF ∪ SF ]; po; [FO]))

∪ [FO]; po; ([U ] ∪ ([MF ∪ SF ]; po; [W ∪ FL ∪ FO]))

∪ [FL]; (po ∩ CL); [FO]

∪ [FO]; (po ∩ CL); [FL]

∪ [W ∪ U ∪R]; po; [FL]

∪ ([U ∪R] ∪ ([W ]; po; [MF ∪ SF ])); po; [FO]

∪ [W ]; (po; [FL])?; (po ∩ CL); [FO]

Notice that [W ]; po; [FL]; (po ∩ CL); [FO] is added to fob, but it was already in fob+ and thus the addition
does not change semantics.

(12) We remove those edges starting at FL ∪ FO:

fob = [W ∪ U ∪R]; po; [FL]

∪ ([U ∪R] ∪ ([W ]; po; [MF ∪ SF ])); po; [FO]

∪ [W ]; (po; [FL])?; (po ∩ CL); [FO]

Let Y = [FL ∪ FO]; fob. Then the old relation fob = fob′ ∪ Y .
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obs = co ∪ rfe ∪ fr

dob = (addr ∪ data); rfi?

∪ (ctrl ∪ (addr; po)); ([W ] ∪ ([isb]; po; [R]))

aob = [range(rmw)]; rfi; [AQ ∪AQpc]

bob = [R]; po; [dmb.ld ∪ dsb.ld]; po; [R ∪W ]

∪ [W ]; po; [dmb.st ∪ dsb.st]; po; [W ]

∪ [R ∪W ]; po; [dmb.sy ∪ dsb.sy]; po; [R ∪W ]

∪ [RL]; po; [AQ]

∪ [AQ ∪AQpc]; po; [W ∪R]

∪ [W ∪R]; po; [RL ∪RLpc]

ob = obs ∪ dob ∪ aob ∪ bob

((po ∩ Loc) ∪ co ∪ rf ∪ fr) acyclic (internal)

ob acyclic (external)

rmw ∩ (fre; coe) empty (atomic)

Figure A.10: The Armv8axiom model [Pulte et al. 2019, Appendix D].

We first prove ob0′;Y ⊆ ob0′ by case analysis. We also prove:

ob+ ⊆ ob0+ (by pf-min)

= (ob0′ ∪ Y )+

= ob0′+ ∪ (Y +; ob0′∗)

Now we show equivalence.

(⇒) Since ob′ ⊆ ob, it is sufficient to prove, for (pf-min), [W ∪U ]; ob+; [FL∪FO] ⊆ [W ∪U ]; ob′+; [FL∪
FO]. It follows from [W ∪ U ]; ob+ ⊆ [W ∪ U ]; (ob0′+ ∪ (Y +; ob0′∗)) = [W ∪ U ]; ob0′+.

(⇐) It is sufficient to prove the acyclicity of ob, or the irreflexivity of ob+. Since ob+ ⊆ ob0′+ ∪ (Y +; ob0′∗),
it is sufficient to prove the irreflexivity of ob0′+ and that of Y +; ob0′∗. The former is immediate. To prove the
latter, suppose otherwise. Then ob0′∗;Y + = Y + ∪ ob0′+ is also not irreflexive. But it contradicts the fact
that both Y + and ob0′+ are irreflexive.

We reached Px86axiom, concluding the proof.

A.5 Proof of the Equivalence of SPArmv8 and PArmv8axiom

A.5.1 SPArmv8

Fig. A.10 presents the Armv8view model [Pulte et al. 2019], and Fig. A.11 presents the (S)PArmv8 model [Raad
et al. 2019a]. PArmv8 and SPArmv8 are the same except that SPArmv8’s ob additionally includes fp. While not
explicit in [Raad et al. 2019a], we require the (persist) axiom that governs the contents of PM after crash.
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(axioms of Armv8axiom (Fig. A.10))

fob = (po?; [dmb.sy ∪ dsb.sy]; po?) \ id (arm-ob-bar)

∪ [W ∪R]; (po ∩ CL); [FO] (arm-w-wb)

∪ [FO]; (po ∩ CL); [FO] (arm-wb-wb)

ob = obs ∪ dob ∪ aob ∪ bob ∪ fob ∪ fp (redefined)

nvo ⊇ [FO]; ob+; [dsb.sy]; ob+; [W ∪ FO] (nvo-wb-d)

∪ [W ]; (ob+ ∩ CL); [FO] (nvo-w-wb)

∪ co (nvo-co)

nvo is total onW ∪ FO (nvo-total)

P ⊇ dom([FO]; ob+; [dsb.sy]) (nvo-pers)

P ⊇ dom(nvo; [P ]) (nvo-p)

∀l. ∃w. SM(l) = wval(w) ∧ (P × {w}) ∩ Loc ⊆ co? (persist)

Figure A.11: (S)PArmv8 [Raad et al. 2019a].

A.5.2 Equivalence of SPArmv8 and PArmv8axiom

Proof of Theorem 2.6.1. We prove by continuously transforming SPArmv8 into an equivalent one until
reaching PArmv8axiom.

(1) We replace (nvo-wb-d) and (nvo-pers) with:

nvo ⊇ [FO]; po; [dsb.sy]; ob+; [W ∪ FO] (nvo-wb-d)

P ⊇ dom([FO]; po; [dsb.sy]) (nvo-pers)

It is sufficient to prove that [FO]; ob+; [dsb.sy] = [FO]; po; [dsb.sy].

(⊇) By [FO]; po; [dsb.sy] ⊆ fob ⊆ ob.

(⊆) We have [FO]; ob = [FO]; fob ⊆ ([FO]; po; [dmb.sy ∪ dsb.sy]; po?) ∪ ([FO]; (po ∩ CL); [FO]). Then
by induction, we have [FO]; ob+; [dsb.sy] ⊆ [FO]; po; [dsb.sy].

(2) We remove fences from the relations. Specifically, we replace (arm-ob-bar) and (nvo-wb-d) with:

fob = [FO]; po; [dmb.sy ∪ dsb.sy]; po; [W ∪R ∪ FO]

∪ [FO]; (po ∩ CL); [FO]

∪ [W ∪R]; po; [dmb.sy ∪ dsb.sy]; po; [FO]

∪ [W ∪R]; (po ∩ CL); [FO]

nvo ⊇ [FO]; po; [dsb.sy]; po; ob∗; [W ∪ FO]

The old and new axioms are equivalent. The proof is similar to that of Theorem 2.4.4.

(3) We replace (nvo-wb-d), (nvo-w-wb), (nvo-co), (nvo-total), (nvo-pers), and (nvo-p) with the following
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axiom:

per = [W ]; (ob+ ∩ CL); [FO]; po; [dsb.sy] (per)

P ⊇ dom(per)

P ⊇ dom(co; [P ])

P ⊆ W

(⇒) Suppose a behavior satisfies the old axioms. Let P ′ = P ∩W . Thanks to (nvo-pers) and (nvo-w-wb),
we have dom(per) ⊆ P ′. Thanks to (nvo-co), we have dom(co; [P ]) ⊆ P . Since only writes (inW ) affect
the contents of PM, the same behavior is also allowed in the new axioms.

(⇐) Suppose a behavior satisfies the new axioms. Let nvo1 be the union of RHS’es of (nvo-wb-d), (nvo-w-wb),
and (nvo-co); nvo2 = (P ∪dom([FO]; po; [dsb.sy]))× (W \P ); and nvoc = nvo1∪nvo2. We prove nvoc is
acyclic. If there is such a cycle, then it should be a cycle of nvo1, nvo2, or nvo+1 ; nvo

+
2 . But the first case is im-

possible because nvo1 ⊆ ob+ and ob is acyclic; the second case is impossible because its domain and codomain
are disjoint; and the third case is also impossible as follows. If there is a cycle of nvo+1 ; nvo

+
2 , then there is an

edge (a, b) ∈ nvo+1 ∩nvo−1
2 = [W \P ]; nvo+1 ; [P ∪dom([FO]; po; [dsb.sy])]. Without loss of generality, we

assume (a, b) is minimal such an arc of nvo+1 . (i) Suppose (a, b) has no intermediate vertices, i.e. (a, b) ∈ nvo1.
By case analysis on [W \ P ]; nvo1; [P ∪ dom([FO]; po; [dsb.sy])], we can derive contradiction. (ii) Suppose
(a, b) has an intermediate vertex, say c, of nvo+1 . Then c /∈ dom(nvo2) ∪ codom(nvo2) by the minimality,
and thus c ∈ FO \ dom(po; [dsb.sy]). As a result, (a, b) ∈ [W ]; (ob+ ∩ CL); ([FO]; po; [dsb.sy]; po; ob∗)+.
Then we have a ∈ dom(per) ⊆ P , contradicting the assumption.

Now let nvo be an acyclic superset of nvoc in which W ∪ FO is linearized, and P ′ = dom(nvo?; ([P ] ∪
([FO]; po; [dsb.sy]))). Then nvo and P ′ satisfy the original axioms: (nvo-pers) by the definition of P ′;
(nvo-wb-d), (nvo-w-wb), and (nvo-co) by nvo ⊇ nvo1; (nvo-total) by linearization; and (nvo-p) by the
definition of P ′.

It remains to prove P ′ ∩W = P . (⊇) By the definition of P ′. (⊆) Suppose w ∈ P ′ ∩W . Then there exists e
such that (w, e) ∈ nvo?; ([P ]∪ ([FO]; po; [dsb.sy])). If w /∈ P , then (e, w) ∈ nvo2 and thus (w,w) ∈ nvo+,
contradicting the acyclicity of nvo. Thus w ∈ P .

(4) We replace (per), P ⊇ dom(per), P ⊇ dom(co; [P ]), and P ⊆ W with the following axiom:

per = [W ]; (ob+ ∩ CL); [FO]; po; [dmb.sy] (per)

P = dom(per)

(⇒) Obvious from the fact that the axioms are weakened.

(⇐) Let P ′ = dom(co?;P ). Then P ′ and SM satisfies all the old axioms.

(5) We additionally require the following axiom:

pf ⊆ ob+ (pf-min)

The proof is almost the same with that of Theorem 2.4.2 in §A.3.

(6) We replace (per) with the following axiom:

per = pf; [FO]; po; [dmb.sy] (per)

It is sufficient to prove that [W ]; (ob+ ∩ CL); [FO] = co?; pf; [FO].
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(⊇) By (pf-min).

(⊆) Suppose (w, f) ∈ [W ]; ob+ ∩ CL; [FO] but (w, f) /∈ co?; pf; [FO]. Then (f, w) ∈ fp ⊆ ob by definition.
Then (w,w) ∈ ob+, contradicting the acyclicity of ob.

(7) We remove those edges starting at FO:

fob = [W ∪R]; po; [dmb.sy ∪ dsb.sy]; po; [FO]

∪ [W ∪R]; (po ∩ CL); [FO]

Let Y = [FO]; fob. Then the old relation fob = fob′ ∪ Y . We first prove ob0′;Y ⊆ ob0′ by case analysis.
Then the rest of the proof of this step is the same with that of the last step in Theorem 2.4.3.

We reached PArmv8axiom, concluding the proof.

A.6 Verified Examples

We use our model checking tool (§2.7) to verify several representative persistent synchronization examples.
All examples are verified within one second.

First, all examples presented in this dissertation (except for CommitE) are verified. Specifically, the following
examples are verified without modification2:

• CommitWeak satisfies I △
= (Data=0 ∨ Data=42) ∧ (Commit=0 ∨ Commit=1).

• Commit1 satisfies I △
= Commit=1 ⇒ Data=42.

• Commit2 satisfies I △
= Commit=1 ⇒ Data=42.

• FlushMCA satisfies I △
= ¬(Z=W=1 ∧ X=Y=0).

The CommitOpt example satisfies its invariant only under x86, but not under Armv8. We adapted this example to
Armv8 as follows and verified:

(a) Data1 := 42 (d) if (Data2 != 0) {

(b) dmb.sy (e) dmb.sy

(c) Data2 := 7 (f) flushopt Data1

(g) flushopt Data2

(e) dsb.sy

(h) Commit := 1 }

(CommitOptArm)

• CommitOptArm satisfies I △
= Commit=1 ⇒ Data1=42 ∧ Data2=7.

The CommitE example involving I/O is not verified yet by the model checker because it currently does not
support I/O instructions. We believe it is straightforward to support them as done in [Kang et al. 2017] and verify
the example.

In addition, the following examples are verified:

(a) Data := 42

(b) flushopt Data

(c) Commit := 1

(CommitWeakOpt)
(a) Data := 42 (b) if (Data != 0) {

(c) flushopt Data

(d) Commit := 1 }

(Commit2Opt)

2Unless otherwise noted, loads and stores are plain (i.e. LDR and STR).
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(a) X := 1 (d) r1 := Y

(b) dmb.sy (e) dmb.sy

(c) Y := 1 (f) flushopt X

(g) dsb.sy

(h) Z := r1

(FOB)

(a) r1 := WeakCASacq(Lock,0,1) (j) r2 := WeakCASacq(Lock,0,1)

(b) if (r1 == 0) { (k) if (r2 == 0) {

(c) X := 1 (l) if (X == 1) {

(d) Y := 1 (m) Z := 1

(e) flushopt X (n) flushopt Z

(f) dsb.sy (o) dsb.sy }

(g) flushopt Y (p) Lock :=rel 0 }

(h) dsb.sy

(i) Lock :=rel 0 }

(AtomicPersists)

The AtomicPersists example, adopted from [Raad et al. 2020, Example 3] modulo architectural differences, models
persistent transaction. Here, Lock :=rel 0 is a release store (STLR), and WeakCASacq(l, v1, v2) tries to compare-
and-swap Lock from v1 to v2 with the acquire ordering, returning 0 if successful or 1 otherwise. WeakCASacq is
implemented roughly as follows:

(a) r1 := loadtrue,acq [l] // LDAXR

(b) if (r1 != v1) {

(c) return 1 }

(d) r2 := storetrue,pln [l] v2 // STXR

(e) return r2

(WeakCAS)

• CommitWeakOpt satisfies I △
= (Data=0 ∨ Data=42) ∧ (Commit=0 ∨ Commit=1).

• Commit2Opt satisfies I △
= (Data=0 ∨ Data=42) ∧ (Commit=0 ∨ Commit=1).

• FOB satisfies I △
= Z=1 ⇒ X=1.

• AtomicPersists satisfies I △
= Z=1 ⇒ X=1 ∧ Y=1.
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Chapter B. Appendices of §3

B.1 Detectably Recoverable Insertion and Deletion

While CAS is a general base operation for pointer-based DSs, we observe that the performance of DSs
implemented with detectable CAS (§3.4.3) are sometimes worse than that of hand-tuned detectable DSs, e.g.,
MSQ-mmt-O0 is slower than hand-tuned detectable MSQs (§3.6.2). The primary reason is that general detectable
CASes like pcas() performs plain CASes to the same location twice and flushes the location between them,
incurring an high contention on the location among multiple threads.

As an optimization, we design a more efficient atomic pointer location object supporting detectable insert—
atomically replacing the Null pointer—and delete—atomically detaching a valid memory block from DSs—as
primitive operations. To this end, we extend the core language to support these operations. The key idea, inspired
by an optimization of Friedman et al. [2018]; Li and Golab [2021]’s hand-tuned detectable MSQs, is distributing
the contention of multiple threads into multiple memory blocks, significantly relieving contention on any single
location. Such an optimization, however, requires non-trivial synchronization among multiple memory blocks,
thus limiting its application to only insert and delete operations. While less general than CAS, insert and delete
operations still support a wide variety of DSs, e.g. we can implement Michael-Scott queue (MSQ) [Michael and
Scott 1996] with insert and delete operations.

B.1.1 API

We introduce operations of the following API:

1: v1 := insert(loc, new, ds) ▷ v1 is either Ok or (Err cur)

2: v2 := delete(loc, old, new) ▷ v2 is either Ok or (Err cur)

3: v3 := ploadopt(loc) ▷ considered read-only

The insert function atomically updates loc from Null to new, and delete atomically updates loc from old to
new under the assumption that old is then unlinked from its DS (hence the name). The two functions returns Ok
if successful; otherwise, returns (Err cur) where cur is the current value of loc. Since the two functions utilize
tagged pointers [Wikipedia 2022] to synchronize with each other, we also provide a non-memento function
ploadopt that reads a untagged value from a location loc designated for insert and delete operations.

The API of these operations are different from that of detectable checkpoint and CAS as follows:

• While insert and delete are memento functions, they do not receive a memento id because all necessary
information is checkpointed in the DS ds’s memory blocks.

• The insert operation’s loc parameter does not need to be the same across crashes. Thus, we underline
the other parameters (that should be the same across crashes) but not loc of insert. This can be used to
reduce PM flushes by saving a checkpoint for the location. To exploit this fact, we extend the type system to
distinguish stable variables (that is same across crashes) and unstable variables (that may not be the same
across crashes), and introduce a rule for unstable variable definition (omitted in §B.5).

B.1.2 Components and Assumptions

We present the components for insertion and deletion and their assumptions on the DS.
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Location A location is a 64-bit architecture word, which we split into four categories: 1-bit persist (or dirty)
flag for the link-and-persist technique [Wang et al. 2018; David et al. 2018], 8 bits reserved for future purposes,
10-bit user tag, and 45-bit offset. We enforce the invariant for the persist bit that the pointer value is persisted
whenever the bit is cleared. Such an invariant is cooperatively maintained by location’s three operations: load,
insertion, and deletion. The load operation ensures that the returned pointer value is always persisted in the
location. We assume the encode and decode functions convert a tuple of persist bit and offset with user tag into
an 64-bit word and the other way around.

Memory Block We assume each memory block has a dedicated 64-bit architecture word, which we call repl,
that describes the memory block that replaces itself as an atomic location’s next pointer value. We split 64 bits
into two categories: 9-bit thread id, 10-bit user tag, and 45-bit offset. Similarly to detectable CAS (§3.4.3), the
thread id 0 is reserved for those blocks that are not replaced yet. We assume the encodeR and decodeR functions
convert a tuple of thread id and offset with user tag into an 64-bit word and the other way around.

Traversal As we will see, we checkpoint the insertion of a memory block to a DS in the inserted node’s repl
field, and for efficiency purposes, we flush such checkpoint to PM only when the block is deleted. Should the
system crash, we detect whether a non-checkpointed memory block was inserted before the crash by checking if
the block is still in the DS (see §B.1.3 for details). To this end, we require the ability to traverse all the memory
blocks in a DS. For instance, an MSQ is traversable from its head by recursively chasing each node’s next pointer.

Memento Thememento of insertion and deletion operations consist of a single timestamp at which an operation
was failed for the last time.

Replay Flag We assume the per-thread variable REPLAY indicates whether the thread is replaying a pre-
crash execution (REPLAY = True) or executing new operations (REPLAY = False). Formally, REPLAY

is true if and only if the thread’s execution does not yet observe a memento with the timestamp larger than
ts.time (e.g., pcas-succ).

B.1.3 Normal Execution

Algorithm 7 presents the load, insertion, and deletion algorithms.

Load The ploadopt operation, which we adopt from David et al. [2018]; Wang et al. [2018], ensures the returned
pointer values are always persisted by ❶ performing an architecture-provided plain load and decodes the pointer
value (L2-L3); ❷ if its persist bit is cleared—which implies the pointer value is persisted, then returning the pointer
value (L4); otherwise, ❸ retrying for a while to read a pointer value without the persist bit being set (L5-L10); and
if it fails, ❹ flushing loc itself (L11); ❺ trying to clear the persist bit of loc by performing a CAS, and if it fails,
retrying from the beginning (L12-L14); and ❻ returning the pointer value with the persist bit being cleared (L15).

Insertion The insert operation receives a location (loc), a new pointer value (new), the enclosing DS (ds),
and the memento idmid; and atomically updates loc from Null to new in a persistent manner (L17). insert first
checks if it is executed in the replay mode (see §B.1.4 for details on replay); otherwise, it ❶ atomically updates
loc’s pointer value from the Null pointer to the given pointer with the persist bit being set (L30); if it fails, records
such a fact to the memento and reports the failure (L36); ❷ flushes loc (L38); and ❸ tries to atomically clear loc’s
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Algorithm 7 Load, Insertion, Deletion, and Helping Load
1: function ploadopt(loc)
2: old := Loadpln(loc)

3: (pold, oold) := decode(old)
4: if ¬pold then return oold

5: t := rdtsc

6: cur := Loadpln(loc)

7: (pcur, ocur) := decode(cur)
8: if ¬pcur then return ocur

9: if old ̸= cur then old := cur; goto 3

10: if rdtsc < t+ PATIENCE then goto 6

11: flushopt loc

12: old′ := encode(False, oold)
13: r := CASpln(loc, old, old′)
14: if r is (Err cur) then old := cur; goto 3

15: return old′

16: end function

17: function insert(loc, new, ds,mid)
18: if REPLAY then

19: b1 := Contains(ds, new)

20: b2 := (Loadpln(new.repl) ̸= Null)
21: if b1 ∨ b2 then return Ok
22: tmmt := Loadpln(mmts[mid].time)

23: if ts.time < tmmt then

24: Storepln(ts.time, tmmt)

25: return Err
26: end if

27: Storepln(REPLAY, false)

28: end if

29: new′ := encode(True, new)

30: r := CASpln(loc,Null, new′)

31: if r is Err then

32: t := rdtscp

33: Storepln(mmts[mid].time, t)

34: flushoptmmts[mid].time; sfence

35: Storepln(ts.time, t)

36: return Err
37: end if

38: flushopt loc

39: new′′ := encode(False, new)

40: CASpln(loc, new′, new′′)

41: return Ok
42: end function

43: function delete(loc, old, new,mid)
44: if REPLAY then

45: next := Loadpln(old.repl)

46: (tidnew, onew) := decodeR(next)
47: if tid = tidnew then

48: goto 67

49: end if

50: tmmt := Loadpln(mmts[mid].time)

51: if ts.time < tmmt then

52: Storepln(ts.time, tmmt)

53: return Err
54: end if

55: Storepln(REPLAY, false)

56: end if

57: new′ := encodeR(tid, new)

58: r := CASpln(old.repl,Null, new′)

59: if r is (Err cur) then

60: t := rdtscp

61: Storepln(mmts[mid].time, t)

62: flushoptmmts[mid].time; sfence

63: Storepln(ts.time, t)

64: _ := Help(loc, cur)
65: return Err
66: end if

67: flushopt old.repl

68: CASpln(loc, old, new)

69: DeferFlush(loc);Retire(old)
70: return old

71: end function

72: function Help(loc, old)
73: if old = Null then return (Ok old)

74: new := Loadpln(old.repl)

75: (tidnew, onew) := decodeR(old)
76: if onew = Null then return (Ok old)

77: t := rdtsc

78: cur := Loadpln(loc)

79: if cur ̸= old then return (Ok cur)

80: if rdtsc < t+ PATIENCE then goto 77

81: flushopt old.repl

82: r := CASpln(loc, old, onew)

83: return (r is (Err e)) ? (Ok e) : (Ok onew)

84: end function

persist bit (L39-L40). It is okay to let the second CAS fail (L40) because it means a concurrent operation should
have persisted loc and cleared the persist bit.
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Figure B.1: Delete operation steps.

Deletion The delete operation, illustrated in Fig. B.1, receives a location (loc), an old pointer value to a valid
memory block (old), an new pointer value (new), and the memento id (mid); and atomically updates loc from old

to new in a persistent manner (L43). delete first checks if it is executed in the replay mode; otherwise, it ❶ tries
to atomically install new annotated with the current thread id to old’s repl field (L57-L58); if it fails, helps the
completion of concurrent delete operations to guarantee lock freedom, records such a fact to the memento, and
reports the failure (L65, see §B.1.5 for details on helping); ❷ flushes old’s repl field (L67); ❸ tries to replace loc’s
value from old to new, persists loc in a deferred manner, and retires old (L68-L69); and ❹ returns old (L70). Here,
we retire old so that it will be freed once it is no longer accessible from the other threads using safe memory
reclamation schemes such as hazard pointers [Michael 2004] and epoch-based reclamation [Fraser 2004]. We also
ensure loc is flushed at least before old is freed using DeferFlush so that loc points to a valid memory block
even in case of crashes (§3.5.1).

A delete operation is committed when the CAS on old’s repl (L58) is persisted, while its effects are applied
to loc later (L68). It is safe for concurrent operations to see an old value of loc even after a new value is committed,
as they either would fail or can linearize before the deletion.

B.1.4 Replay

Insertion The replay execution of insertion needs to distinguish the cases when the pre-crash execution is
interrupted before or after persisting the first CAS (L30). To this end, we use Attiya et al. [2019]’s direct tracking
approach: in a replay execution, a block has been inserted to a DS if and only if (1) the block is still contained in
the DS (L19); or (2) the block’s repl field is populated, which means it is already deleted (L20). If it is not the case,
the replay execution reads the timestamp checkpointed in the memento, and if it is more recent than the thread’s
latest observed timestamp, replays the failure (L23). Otherwise, the operation is being freshly executed, so exits
the replay mode and continues (L27).

Deletion The replay execution of deletion needs to distinguish the cases when the pre-crash execution is
interrupted (E1) after reporting a failure; or (E2) before successfully persisting the first CAS (L58); or (E3) after
that. To this end, the replay execution of deletion ① loads and decodes the old’s repl, and if its tid is the current
thread id, then resumes from the normal execution’s step ❷ (L48); ② reads the timestamp checkpointed in the
memento, and if it is more recent than the thread’s latest observed timestamp, replays the failure (L51); and
② otherwise, the operation is being freshly executed, so exits the replay mode and continues the normal execution
(L55). For each case, the post-crash replay execution correctly resumes the operation as follows:

(E1) Since the operation performed nothing to old’s repl, it goes to L51 and replays the failure.

(E2) Since the operation performed nothing to old’s repl, it goes to L55, exits the replay mode, and continues the
operation.
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Algorithm 8 Michael-Scott Queue’s Enqueue Operation with Volatile Cache Optimization
1: function Enqeue(q, val,mid)
2: let blk := chkpt(λ.eblk,mid.blk);

3: loop

4: let tail := Loadvol(q.tail);

5: let next := Load(tail.next);
6: if next = Null then
7: CASvol(q.tail, tail, next);
8: continue

9: end if

10: let succ := insert(tail.next, blk, q,mid.cas);

11: if succ then

12: if ¬REPLAY then CASvol(q.tail, tail, blk);
13: return

14: end if

15: end loop

16: end function

eblk
△
= blk := palloc(⟨val : val ; next : Null⟩); blk

(E3) Since new should contain the current thread id, it goes to L67 and correctly resumes from the normal
execution’s step ❷.

B.1.5 Helping

A delete operation may help an ongoing concurrent delete operation’s second CAS. Such a help is essential
for lock freedom because the concurrent operation may be committed—have successfully performed the first
CAS—while its effects have not been applied to loc yet. The Help operation receives a location (loc) and an old
pointer value (old) and returns a settled value of loc by possibly helping the second CAS of ongoing deletions
(L72) as follows: it ❶ returns old if it is the settled value Null (L73); ❷ loads and decodes old.repl as new
(L74-L75); ❸ returns old if repl is Null and thus old is settled (L76); ❹ tries to read a pointer value for a while
(L77-L80); ❺ flushes old.repl (L81); ❻ tries to update loc from old to new, and regardless of the result, returns
the current value of loc (L82-L83).

B.2 ExtendingMemento Framework with Advanced Optimizations

We introduce advanced primitive operations and type derivation rules used for the implementation of
MSQ-mmt-O1, MSQ-mmt-O2, and Clevel-mmt (§3.5).

B.2.1 Volatile Cache Optimization

Example: Michael-Scott Queue To motivate volatile cache optimization, consider Michael-Scott’s queue
(MSQ) presented in Algorithm 8. For volatile memory, its enqueue operation proceeds as follows:

(1) It allocates a new block with the given value (L2).

(2) It dereferences the queue’s tail pointer and its next block (L4, L5).

(3) If next is occupied, then tail is stale, so it tries to advance it and retries the operation (L6).
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(4) Tries to append the new block by a CAS (L10).

(5) If successful, advances the tail pointer and returns (L11). Otherwise, retries the operation.

Observation We may transform MSQ for volatile memory to persistent memory by checkpointing all variables
including tail and next. However, the evaluation result forMSQ-mmt-O0 shows that such an algorithm is slower
than hand-tuned detectable versions of MSQ (§3.6). The primary reason is that, as Friedman et al. [2018]; Li and
Golab [2021] observed, tail does not need to be persistent across crashes because the tail pointer is necessary
just to satisfy a simple invariant: it should be reachable from the head pointer. Even if the tail pointer’s value
is lost due to a crash, we can easily recover a value that satisfies the invariant, e.g., we can re-initialize the tail
pointer with the head pointer. We capture this idea with a general volatile cache optimization, e.g., placing tail in
DRAM so that we do not need to persist its writes.

Primitive Operations To this end, we can introduce the following operations:

(1) vl := Allocvol( #»s ): it allocates a volatile location, vl ∈ VLoc, that is semantically distinguished from PM
location (PLoc). The allocation is annotated with statements, #»s , that is executed to initialize the value at vl
not only for the first allocation but also for crashes. To capture this in the semantics, machine transitions
admit a step that randomly picks a volatile location and re-initialize it with the provided statements.

(2) Loadvol(vl): loads from the volatile location vl.

(3) CASvol(vl, v1, v2): tries to atomically update vl from v1 to v2.

As discussed above, we consider q.tail a volatile location and initialize it with statements, #»s , that returns the
queue’s head pointer. As such, the tail pointer’s invariant—reachable from the head pointer—is always maintained
even after crashes. Also, we use volatile location operations accordingly.

Type Derivation Rules In the presence of volatile locations, the type system can be generalized as follows.

• Variable Context: The type system presented in Fig. 3.2 assumes all variables are stable: their values are
preserved even after crashes. However, e.g., the queue example’s tail is unstable in that its value can be
changed after crashes. As such, we should distinguish those variables that are stable and those that are
unstable (precise definition omitted).

• Volatile Parameters: The type system allows deterministically replayed functions to have volatile parameters,
e.g., loc of Insert (§B.1).

• Unstable Statements: The type system allows unstable read-write statements on volatile locations (e.g.,
volatile CASes), but only under the condition that these statements use only those values that are produced in
pre-crash executions and retrieved from mementos. For instance, the first volatile CAS’s arguments are q.tail,
tail, and next, which is directly from the operation’s argument (q.tail) or freshly calculated in the latest
execution (tail and next). For another instance, even though one of the second volatile CAS’s arguments is
blk, which may be produced in pre-crash executions and retrieved from mementos, but we execute the CAS
only under the condition ¬REPLAY , which means the operation is not replayed and thus freshly executed.
As such, even blk’s value is freshly calculated.

The last condition is crucial not to overwrite volatile locations with stale checkpointed values. For instance,
suppose blk was already inserted to the queue before crashes and a post-crash execution reaches L12. If it were
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successfully executing the CAS and writing blk to the volatile location q.tail, then it may break the tail pointer’s
invariant because the queue’s head pointer may have already passed blk in its linked-list. We prevent such an
error by executing the CAS only in the normal execution.

Volatile locations should be used with caution—hence an advanced technique—because we assume they can
be re-initialized at arbitrary moments as a machine step. As such, they should be used only as a cache of PM with
a well-defined invariant (hence the name of the optimization).

Future Work We believe our treatment of the volatile cache optimization subsumes the existing use cases
of data placement in volatile locations (especially DRAM). We leave as future work recasting persistent index
structures [Oukid et al. 2016; Friedman et al. 2018; Li and Golab 2021] and those DSs that mirror data in both
DRAM and PM [Zuriel et al. 2019; Friedman et al. 2021] to the Memento framework.

B.2.2 Try Loop Optimization

In porting Clevel [Chen et al. 2020] to our framework, we discover a pattern, which we call try loop, that
is supported with the loop rule, but only inefficiently. In a try loop, we iterate over elements and repeatedly
execute a memento function until it returns a successful result. There is no preference on the elements and a
single successful execution of the function for any element suffices. For instance, Clevel is based on the open
hashing scheme in which you may insert a value (memento function) to one of multiple slots (elements). If such a
pattern were represented with the composition rules in Fig. 3.2, the loop rule would checkpoint the index for
each iteration, significantly degrading the performance. To optimize such a pattern, we additionally allow the
following pattern with a new type derivation rule, loop-try (definition omitted, a straightforward translation
of the definition of TryLoop):
1: function TryLoop(iinit, next, arg, f ,mid)
2: if REPLAY then

3: if ChkptPeek(mid.fail) is (Ok ()) then return Err
4: if ChkptPeek(mid.arg) is (Ok arg) and f(arg,mid.f,True) is (Ok res) then return (Ok res)

5: Storepln(REPLAY, false)

6: end if

7: loop

8: let i := ϕ(iinit, next(i)); let arg := arg(i);

9: if arg is (Ok arg) then

10: Checkpoint(arg,mid.arg);

11: if f(arg,mid.f) is (Ok res) then return (Ok res)

12: else

13: Checkpoint((),mid.fail); return Err
14: end if

15: end loop

16: end function

In essence, for each index i, the function tries to perform f(arg(i)), and if successful, returns the result (L11); and
if the iteration is over (arg(i) = Err), returns the failure (L13). For detectable recovery, we (1) checkpoint the
failure (L13) and replay it in the recovery mode with ChkptPeek function that returns the checkpointed value
(L3); (2) checkpoint the last argument (L10) and recover it in the recovery mode (L4); (3) execute the memento
f (L11) and replay it in the recovery mode (L4); and (4) in the recovery mode, after trying to recover the last
execution, begin from the initial index (iinit) as if it is normal.
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(a) Throughput
(1 location)

(b) Throughput
(1K locations)

(c) Throughput
(1M locations)

(d) Memory usage
(1M locations)

Figure B.2: Multi-threaded throughput of detectable CASes.

B.2.3 Invariant-Based Optimization

As the last optimization, we exploit invariants to optimize MSQ-mmt-O1 to MSQ-mmt-O2. More specifically,
we follow Friedman et al. [2018]; Li and Golab [2021] to rely on the invariant that all links from the head pointer
to the tail pointer are already persisted.

By exploiting this invariant, we can reduce the number of CASes from two to one for MSQ’s enqueue
operation. Without the invariant, we employ the link-and-persist technique [Wang et al. 2018; David et al. 2018]
to guarantee that readers can read only persisted pointer values. However, this technique requires two CASes:
the first with marking the dirty bit and the second to remove the mark. The two CASes significantly degrade the
performance because, after the first CAS, the target cacheline is flushed to the PM hardware so that the second
CAS should bring the same cacheline from the PM hardware again. In contrast, with the invariant, we can ensure
the same property as follows:

(1) The enqueue operations writes pointer values without marking the dirty bit using only a single CAS.

(2) The dequeue operations persist pointer values before using them. But if a pointer value is before the tail
pointer, the invariant guarantees that the pointer value is already persisted. Only when the pointer value is
beyond the tail pointer, the dequeue operations persist it.

This optimization, however, is not currently captured in our type system: the optimization is based on
an invariant on the runtime information, which is beyond the capability of the static type system. But we
can incrementally reason about the safety of this invariant-based optimization (at least informally) on top of
MSQ-mmt-O1whose detectability is statically reasoned about in our type system. Formalizing such an incremental
reasoning is left as future work (§3.7).

B.3 Full Evaluation Results

In this section, we report the full experimental results. For a detailed analysis of the results, see §3.6; for the
code and script used for the experiments, see the supplementary materials [Cho et al. 2023a].

Performance of Detectably CAS Fig. B.2 is the same with Fig. 3.5. See §3.6.2 for an analysis.

Performance of Detectable List Fig. B.3 and Fig. B.4 illustrate the performance of lists for read- and update-
intensive workloads, respectively. They collectively subsume Fig. 3.6. See §3.6.2 for an analysis.
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(a) 20 key range (b) 100 key range (c) 500 key range (d) 2K key range

Figure B.3: Multi-threaded throughput of persistent lists for read intensive.

(a) 20 key range (b) 100 key range (c) 500 key range (d) 2K key range

Figure B.4: Multi-threaded throughput of persistent lists for update intensive.

Performance of Detectable Queue Fig. B.5 is the same with Fig. 3.7. See §3.6.2 for an analysis.

Performance of Detectable Hash Table For hash tables, we use the evaluation workloads of a PM hash table
evaluation paper [Hu et al. 2021]: “We stress test each hash table with individual operations (insert, positive
and negative search, and delete) and mixed workloads. Negative search means searching keys that do not exist.”
“We initialize hash tables with a capacity that can accommodate 16M key-value pairs.” “To measure insert-only
performance, we insert 200M records into an empty hash table directly. To measure the performance of the search
and delete operation and the mixed workloads, we first initialize the hash table with 200M items (loading phase),
then execute 200M operations to perform the measurements (measuring phase).” “We run the experiments with
workloads using uniform distribution and skewed distribution (self-similar with a factor of 0.2, which means 80%
of accesses focus on 20% of keys).” “We consider fixed-length (8 bytes) keys and values.”

Fig. B.6 and Fig. B.7 illustrate the performance of hash tables for uniform and skewed distributions. Fig. B.6
subsumes Fig. 3.8. Clevel exhibits a segmentation fault for the balanced workload with 32 threads (hence the
blank). See §3.6.2 for an analysis.

B.4 Full Core Language Semantics

The definitions presented in this section subsume those presented in §3.3.1. For a detailed discussion,
see §3.3.1. Fig. B.8 presents the core language syntax. Fig. B.9 presents the states used in the core language
semantics. Fig. B.10 defines the machine transitions. Fig. B.11 defines the memory transitions. Fig. B.12 defines
the thread transitions for non-memento steps. Fig. B.13 defines the thread transitions for memento steps. Here,
the shaded area represents persistent data written to PM.

Note that in loop, we copy the register map, ts1.regs, for the loop body (ts2.regs) loop continuation (in #»c2).
We define semantics in this way to ensure a loop body does not modify the variables defined outside of the loop,
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(a) Enqueue-dequeue (b) Enqueue-20% (c) Enqueue-50% (d) Enqueue-80%

Figure B.5: Multi-threaded throughput of persistent queues.

Figure B.6: Multi-threaded throughput of hash tables for uniform distribution.

Figure B.7: Multi-threaded throughput of hash tables for self similar distribution with factor 0.2.

in order to simplify our our theoretical development. This design does not fundamentally limits programmability:
given a program, you can perform SSA transformation to ensure that a loop body does not modify the variables
defined outside of the loop. Furthermore, we require a loop to explicitly continue with the continue e instruction
to proceed to the next iteration. That is required to guarantee the loop-dependent variable is properly set.

B.5 Full Type System

Fig. B.14 presents the type system. This definition subsumes Fig. 3.2 and additionally defines read-only
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p ::= [δ] #»s1 || . . . || #»sn program

s ∈ Stmt ::= r := e | r := pload(e) | r := palloc(e) assignment & PM

| if (e) #»st
#»sf | loop r e #»s | continue e | break control constructs

| r := f ( #»e ) | return e function call/return

| r := chkpt( #»s , emid) | r := pcas(eloc, eold, enew, emid) detectable op.

e ∈ Expr ::= () | z | b | mid | r | (e1 op e2) | e.i | (e1, e2) | inl e | inr e pure expr.

| match e { inl el ⇒ e ′
l , inr er ⇒ e ′

r} | ϵ | e.lab | . . .

v ∈ Val ::= () | z | b | mid | (v1, v2) | inl v | inr v value

z ∈ Z b ∈ B op ∈ Op r ∈ VReg
△
= N l ∈ PLoc

△
= N

f ∈ FnId δ ∈ Env
△
= FnId ⇀ (

#         »
VReg × #       »

Stmt) lab ∈ Label mid ∈ #         »

Label

Figure B.8: Core language syntax.

c ∈ Cont ::= loopCont(σ, r , #»sb,
#     »scont) loop context

| fnCont(σ, r , #»s ) function context

| chkptCont(σ, r , #»s ,mid) checkpoint context

t ∈ Time
△
= N tid ∈ TId

△
= N

σ ∈ VRegMap
△
= VReg ⇀ Val ts ∈ TState

△
= ⟨regs : VRegMap; time :Time⟩

mmts ∈ Mmts
△
=

#         »

Label → ⟨val :Val; time :Time⟩

T ∈ Thread
△
=

#       »
Stmt× #       »

Cont× TState×Mmts

ev ∈ Event ::= R(l , v) | U(l , vold, vnew) tr ∈ #          »
Event

mem ∈ Mem
△
= PLoc → Val M ∈ Machine

△
=

#              »

Thread×Mem

Figure B.9: Core language semantics: states.

statement judgment of the form ∆ ⊢RO
#»s . For a detailed discussion, see §3.3.2.

B.6 Proof of the Detectability Theorem

We prove the detectability theorem (Theorem 3.3.1).

B.6.1 Transitions

Definition B.6.1 (Reflexive Transitive Closure with Concatenated Traces). Let tr

↪→ be a relation over

a trace. We define

tr

↪→
∗
be the reflexive transitive closure of

tr

↪→ with concatenated traces.

For instance, if Atr1
↪→B and B

tr2
↪→C , then we have Atr

↪→
∗
C where tr = tr1 ++ tr2.
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ts init
△
= ⟨regs = {mid 7→ []}; time = 0⟩

mmts init
△
= {mid 7→ ⟨Val = (); time = 0⟩ |mid ∈ #         »

Label}

meminit
△
= {l 7→ () | l ∈ PLoc}

init([δ] #»s1 || . . . || #»sn)
△
= ⟨λtid ∈ [1..n].⟨ #   »stid , [], ts init,mmts init⟩,meminit⟩

M1
tr−→p M2

(machine-step)

T1[tid ] = ( #»s1,
#»c1, ts1,mmts1)

T2 = T1[tid 7→ ( #»s2,
#»c2, ts2,mmts2)]

#»s1,
#»c1, ts1,mmts1

tr−→p.δ
#»s2,

#»c2, ts2,mmts2

mem1
tr−→ mem2

(T1,mem1)
tr|U−−→p (T2,mem2)

(machine-crash)

T1[tid ] = ( #»s1,
#»c1, ts1,mmts1)

T2 = T1[tid 7→ ( #        »p.stid , [], ts init,mmts1)]

(T1,mem)
[]−→p (T2,mem)

Figure B.10: Core language semantics: machine transitions.

mem1
tr−→ mem2

(read)

mem[l ] = v ev = R(l , v)

mem
[ev ]−−→ mem

(update)

ev = U(l , vold, vnew) mem1[l ] = vold

mem2 = mem1

[
l 7→ vnew

]
mem1

[ev ]−−→ mem2

Figure B.11: Core language semantics: memory transitions.

Definition B.6.2 (Transitive Closure with Concatenated Traces). Let tr

↪→ be a relation over a trace.

We define

tr

↪→
+
be the transitive closure of

tr

↪→ with concatenated traces.

B.6.2 Lifting

Definition B.6.3 (Seqence with Continuations). We define sequence of statements with continuations,

( #»s , #»c ) ++ #»sα, as follows:

loopCont(σ, r , #»sb,
#»s ) ++ #»sα

△
= loopCont(σ, r , #»sb,

#»s ++ #»sα)

fnCont(σ, r , #»s ) ++ #»sα
△
= fnCont(σ, r , #»s ++ #»sα)

chkptCont(σ, r ,mid , #»s ) ++ #»sα
△
= chkptCont(σ, r ,mid , #»s ++ #»sα)

( #»s , []) ++ #»sα
△
= ( #»s ++ #»sα, [])

( #»s , #   »cpfx ++ [cbase]) ++
#»sα

△
= ( #»s , #   »cpfx ++ [cbase ++

#»sα])

Lemma B.6.4 (Seqence Lifting). For all δ, tr, #»s1,
#»s2,

#»s , ts1ts2,mmts1,mmts2, we have:

#»s1,
#»c1, ts1,mmts1

tr−→
∗
δ

#»s2,
#»c2, ts2,mmts2

=⇒ ∃ #    »sm1,
#    »sm2,

#    »cm1,
#    »cm2.

#    »sm1,
#    »cm1, ts1,mmts1

tr−→
∗
δ

#    »sm2,
#    »cm2, ts2,mmts2

∧ ( #    »sm1,
#    »cm1) = ( #»s1,

#»c1) ++
#»s

∧ ( #    »sm2,
#    »cm2) = ( #»s2,

#»c2) ++
#»s .
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Loops( #       »cloops)
△
= ∀c ∈ #       »cloops. ∃σ, r , #»sb,

#     »scont. c = loopCont(σ, r , #»sb,
#     »scont)

#»s1,
#»c1, ts1,mmts1

[ev ]−−→δ
#»s2,

#»c2, ts2,mmts2

(assign)

ts1.regs(e) = v

ts2 = ts1[regs 7→ ts1.regs[r 7→ v ]]

(r := e) :: #»s , #»c , ts1,mmts
[]−→δ

#»s , #»c , ts2,mmts

(pload)

ts1.regs(e) = l ev = R(l , v)

ts2 = ts1[regs 7→ ts1.regs[r 7→ v ]]

(r := pload(e)) :: #»s , #»c , ts1,mmts
[ev ]−−→δ

#»s , #»c , ts2,mmts

(palloc)

ts1.regs(e) = v ev = R(l , v)

ts2 = ts1[regs 7→ ts1.regs[r 7→ l ]]

(r := palloc(e)) :: #»s , #»c , ts1,mmts
[ev ]−−→δ

#»s , #»c , ts2,mmts

(branch)

ts.regs(e) = v
#»sd = if v then #»st else

#»sf

(if (e) #»st
#»sf ) ::

#»s , #»c , ts,mmts
[]−→δ

#»sd ++ #»s , #»c , ts,mmts

(loop)

ts1.regs(e) = v ts2 = ts1
[
regs 7→ ts1.regs[r 7→ v ]

]
#»c2 = loopCont(ts.regs, r , #»s , #     »scont) ::

#»c1

(loop r e #»s ) :: #     »scont,
#»c1, ts1,mmts

[]−→δ
#»s , #»c2, ts2,mmts

(continue)

ts1.regs(e) = v ts2 = ts1
[
regs 7→ σ[r 7→ v ]

]
#»c = loopCont(σ, r , #»sb,

#     »scont) ::
#    »crem

(continue e) :: #»s , #»c , ts1,mmts
[]−→δ

#»sb,
#»c , ts2,mmts

(break)

ts2 = ts1
[
regs 7→ σ

]
#»c1 = loopCont(σ, r , #»sb,

#     »scont) ::
#»c2

(break) :: #»s , #»c1, ts1,mmts
[]−→δ

#     »scont,
#»c2, ts2,mmts

(call)

ts.regs( #»e ) = #»v δ(f ) = ( #        »prms, #»sf )

ts2 = ts1
[
regs 7→ ⊔i[prmsi 7→ vi]

]
#»c2 = fnCont(ts1.regs, r ,

#»s ) :: #»c1

(r := f ( #»e )) :: #»s , #»c1, ts1,mmts
[]−→δ

#»sf ,
#»c2, ts2,mmts

(return)

ts.regs(e) = v ts2 = ts1
[
regs 7→ σ[r 7→ v ]

]
#»c1 = #       »cloops ++ [fnCont(σ, r , #»s2)] ++

#»c2

Loops( #       »cloops)

(return e) :: #»s1,
#»c1, ts1,mmts

[]−→δ
#»s2,

#»c2, ts2,mmts

Figure B.12: Core language semantics: thread transitions (non-memento steps).

Proof Sketch. Straightforward by induction on the transitions.

Lemma B.6.5 (Continuation Lifting). For all δ, tr, #»s1,
#»s2,

#»c1,
#»c2,

# »cα, ts1ts2,mmts1,mmts2, we have:

#»s1,
#»c1, ts1,mmts1

tr−→
∗
δ

#»s2,
#»c2, ts2,mmts2

=⇒ #»s1,
#»c1 ++ # »cα, ts1,mmts1

tr/ # »cα−−−→
∗

δ
#»s2,

#»c2 ++ # »cα, ts2,mmts2 .

Proof Sketch. Straightforward from the definition.

Definition B.6.6 (Memento Id Expansion). For mid sfx ∈
#         »

Label and labs ⊆ Label, we define the memento
id expansion, µ(midpfx, labs), as follows:

µ(midpfx, labs)
△
= {mid ∈ #         »

Label | ∃lab ∈ labs,mid sfx. mid = midpfx ++ [lab] ++ mid sfx} .
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(chkpt-call)

ts.regs(emid) = mid

mmts[mid ] =

〈
val 7→ vmmt,

time 7→ tmmt

〉
tmmt ≤ ts.time

#»c2 = chkptCont(ts.regs, r , #»s ,mid) :: #»c1

(r := chkpt( #»sc, emid)) ::
#»s , #»c1, ts,mmts

[]−→δ
#»sc,

#»c2, ts,mmts

(chkpt-return)

#»c1 = #       »cloops ++ [chkptCont(σ, r , #»s ,mid)] ++ #»c2

Loops( #       »cloops)

ts1.time < t vr = ts1.regs(e)

ts2 =

〈
regs 7→ σ[r 7→ vr ],

time 7→ t

〉

mmts2 = mmts1

mid 7→

〈
val 7→ vr ,

time 7→ t

〉
(return e) :: #    »srem,

#»c1, ts1,mmts1
[]−→δ

#»s , #»c2, ts2,mmts2

(chkpt-replay)

ts.regs(emid) = mid

mmts[mid ] =

〈
val 7→ vmmt,

time 7→ tmmt

〉
ts1.time < tmmt ts2 =

〈
regs 7→ ts1.regs[r 7→ vmmt],

time 7→ tmmt

〉
(r := chkpt(_, emid)) ::

#»s , #»c , ts1,mmts
[]−→δ

#»s , #»c , ts2,mmts

(pcas-succ)

ts1.regs(eloc) = l

ts1.regs(eold) = vold

ts1.regs(enew) = vnew

ts1.regs(emid) = mid

ev = U(l , vold, vnew) vr = (true, vold)

mmts1[mid ] =

〈
val 7→ vmmt,

time 7→ tmmt

〉
tmmt ≤ ts1.time < t

ts2 =

〈
regs 7→ ts1.regs[r 7→ vr ],

time 7→ t

〉

mmts2 = mmts1

mid 7→

〈
val 7→ vr ,

time 7→ t

〉
(r := pcas(eloc, eold, enew, emid)) ::

#»s , #»c , ts1,mmts1
[ev ]−−→δ

#»s , #»c , ts2,mmts2

(pcas-fail)

ts1.regs(eloc) = l

ts1.regs(eold) = vold

ts1.regs(emid) = mid

ev = R(l , v) v ̸= vold vr = (false, v)

mmts1[mid ] =

〈
val 7→ vmmt,

time 7→ tmmt

〉
tmmt ≤ ts1.time < t

ts2 =

〈
regs 7→ ts1.regs[r 7→ vr ],

time 7→ t

〉

mmts2 = mmts1

mid 7→

〈
val 7→ vr ,

time 7→ t

〉
(r := pcas(eloc, eold, enew, emid)) ::

#»s , #»c , ts1,mmts1
[ev ]−−→δ

#»s , #»c , ts2,mmts2

(pcas-replay)

ts1.regs(emid) = mid

mmts[mid ] =

〈
val 7→ vmmt,

time 7→ tmmt

〉
ts1.time < tmmt ts2 = ts1

[
regs 7→ ts1.regs[r 7→ vmmt],

time 7→ tmmt

]

(r := pcas(eloc, eold, enew, emid)) ::
#»s , #»c , ts1,mmts

[]−→δ
#»s , #»c , ts2,mmts

Figure B.13: Core language semantics: thread transitions (memento steps).

Lemma B.6.7 (Memento Lifting). For all ∆, δ, labs, tr, #»s , #»sω, ts, tsω,
# »cω,mmts,mmtsω ,
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labs ∈ P(Label) FnType ::= RO | RW
∆ ∈ EnvType

△
= FnId → FnType

⊢ p

(program)

⊢ δ : ∆ ∆ ⊢labstid
#   »stid for each tid

⊢ [δ] #»s1 || . . . || #»sn

⊢ δ : ∆

(env-empty)

⊢ : []

(env-ro)

⊢ δ : ∆ ∆ ⊢RO
#»s

⊢ δ[f 7→ ( #        »prms, #»s )] : ∆[f 7→ RO]

(env-rw)

⊢ δ : ∆ ∆ ⊢labs
#»s

#            »prmsall =
#        »prms ++ {mid}

⊢ δ[f 7→ ( #            »prmsall,
#»s )] : ∆[f 7→ RW]

∆ ⊢labs
#»s

(empty)

∆ ⊢∅ []

(assign)

∆ ⊢∅ [r := e]

(cas)

∆ ⊢{lab} [r := pcas(el, eo, en,mid.lab)]

(chkpt)

∆ ⊢RO
#»s

∆ ⊢{lab} [r := chkpt( #»s ,mid.lab)]

(seq)

labs l ∩ labs r = ∅
∆ ⊢labs l

#»sl ∆ ⊢labsr
#»sr

∆ ⊢labs l⊎labsr
#»sl ++

#»sr

(if-then-else)

∆ ⊢labst
#»st ∆ ⊢labsf

#»sf

∆ ⊢labst∪labsf [if (e) #»st
#»sf ]

(loop-simple)

∆ ⊢labs
#»s

∆ ⊢labs [loop _ () #»s ]

(loop)

∆ ⊢labs
#»s lab /∈ labs

∆ ⊢{lab}⊎labs [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )]

(continue)

∆ ⊢∅ [continue e]

(break)

∆ ⊢∅ [break]

(call)

∆(f ) = RW

∆ ⊢{lab} [r := f ( #»e ++ {mid.lab})]

(return)

∆ ⊢∅ [return e]

∆ ⊢RO
#»s

(empty)

∆ ⊢RO []

(assign)

∆ ⊢RO [r := e]

(load)

∆ ⊢RO [r := pload(e)]

(alloc)

∆ ⊢RO [r := palloc(e)]

(loop)

∆ ⊢RO
#»s

∆ ⊢RO [loop r e #»s ]

(continue)

∆ ⊢RO [continue e]

(break)

∆ ⊢RO [break]

(call)

∆(f ) = RO

∆ ⊢RO [r := f ( #»e )]

(return)

∆ ⊢RO [return e]

(seq)

∆ ⊢RO
#»sl ∆ ⊢RO

#»sr

∆ ⊢RO
#»sl ++

#»sr

(if-then-else)

∆ ⊢RO
#»st ∆ ⊢RO

#»sf

∆ ⊢RO [if (e) #»st
#»sf ]

Figure B.14: Type system.

Let midpfx = ts.regs(mid) and mids = µ(midpfx, labs).
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We have:

∆ ⊢labs
#»s

=⇒ #»s , [], ts,mmts
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω

=⇒ #»s , [], ts,mmts|mids
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω|mids

∧ mmts|midsc = mmtsω|midsc

∧ ∀mmtsα,
#»s , [], ts,mmts|mids ⊎mmtsα|midsc

tr−→
∗
δ

#»sω,
# »cω, tsω,mmtsω|mids ⊎mmtsα|midsc .

Proof Sketch. We define the type system in such a way that typed statements only access those mementos
referenced by labs . Such an intention is formalized in this lemma.

B.6.3 Control Construct Cases

Lemma B.6.8 (Seqence Cases). For all δ, tr, #»sl ,
#»sr ,

#»sc,
#»sω,

#»c , #»cc,
# »cω, ts, tsω,mmts,mmtsω, e ,

We have:

#»sl ++
#»sr , [], ts,mmts

tr−→
∗
δ

#»sω,
# »cω, tsω,mmtsω

=⇒ seq-left-ongoing : (∃ # »sm,
# »cm.

#»sl , [], ts,mmts
tr−→

∗
δ

# »sm,
# »cm, tsω,mmtsω ∧ ( #»sω,

# »cω) = ( # »sm,
# »cm) ++

#»sr ∧ ( # »sm,
# »cm) ̸= ([], []))

∨ seq-left-done : (∃tr1, tr2, ts1,mmts1. tr = tr1 ++ tr2 ∧
#»sl , [], ts,mmts

tr1−−→
∗
δ [], [], ts1,mmts1 ∧ #»sr , [], ts1,mmts1

tr2−−→
∗
δ

#»sω,
# »cω, tsω,mmtsω) .

Proof Sketch. The lemma says that an execution of a sequential composition of statements, #»sl and #»sr ,
either does not finish the execution of #»sl or finishes #»sl and continues on #»sr . Straightforward induction on the
structure of #»sl .

Definition B.6.9 (Thread Transition with Base Continuations). We define thread transition with base

continuations,
# »cα, as follows:

#»s1,
#»c1, ts1,mmts1

tr/ # »cα−−−→δ
#»s2,

#»c2, ts2,mmts2

△
= #»s1,

#»c1, ts1,mmts1
tr−→δ

#»s2,
#»c2, ts2,mmts2 ∧ (∃ #   »cpfx.

#»c2 = #   »cpfx ++
# »cα) .

As a special case, we have tr−→δ =
tr/[]−−−→δ .

Lemma B.6.10 (Loop Cases). For any tr, #»s , ts,mmts, #»sω,
# »cω, tsω,mmtsω, σ, r ,

Let
#»c = [loopCont(σ, r , #»s , [])].

We have:

#»s , #»c , ts,mmts
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω

=⇒ loop-ongoing : ( #»s , #»c , ts,mmts
tr/ #»c−−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω)

∨ loop-done : ( #»s , #»c , ts,mmts
tr/ #»c−−−→

∗

δ (break) :: #»sr ,
#»c , ts r,mmtsω ∧

#»sω = [] ∧ # »cω = [] ∧ tsω = ⟨regs : σ; time : ts r.time⟩) .

Proof Sketch. Straightforward by induction on the transitions.
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Lemma B.6.11 (First Loop Iteration). For any tr, #»s , ts,mmts, #»sω,
# »cω, tsω,mmtsω, σ, r ,

Let
#»c = [loopCont(σ, r , #»s , [])].

We have:

#»s , #»c , ts,mmts
tr/ #»c−−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

=⇒ first-ongoing : (∃ #   »cpfx.
# »cω = #   »cpfx ++

#»c ∧ #»s , [], ts,mmts
tr−→

∗
δ

#»sω,
#   »cpfx, tsω,mmtsω)

∨ first-done : (∃ #»s1, ts1,mmts1, tr1, tr2, e.

tr = tr1 ++ tr2 ∧
#»s , [], ts,mmts

tr1−−→
∗
δ (continue e) :: #»s1, [], ts1,mmts1 ∧

(continue e) :: #»s1,
#»c , ts1,mmts1

tr2/
#»c−−−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω) .

Proof Sketch. Straightforward by induction on the transitions.

Lemma B.6.12 (Last Loop Iteration). For any tr, #»s , ts,mmts, #»sω,
# »cω, tsω,mmtsω, σ, r ,

Let
#»c = [loopCont(σ, r , #»s , [])].

We have:

#»s , #»c , ts,mmts
tr/ #»c−−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

=⇒ ∃ts1,mmts1,
#   »cpfx, tr1, tr2.

tr = tr1 ++ tr2 ∧

(last-first : ((ts,mmts) = (ts1,mmts1) ∧ tr1 = []) ∨

last-cont : (∃e, #»sr , ts r.
#»s , #»c , ts,mmts

tr1/
#»c−−−−→

∗

δ (continue e) :: #»sr ,
#»c , ts r,mmts1 ∧

ts1 = ⟨regs : σ[r 7→ ts r.regs(e)]; time : ts r.time⟩)) ∧
# »cω = #   »cpfx ++

#»c ∧ #»s , [], ts1,mmts1
tr2−−→

∗
δ

#»sω,
#   »cpfx, tsω,mmtsω .

Proof Sketch. Straightforward by induction on the transitions.

Lemma B.6.13 (Function and Checkpoint Cases). For any δ, tr, #»s , #»sω,
#»c , # »cω, ts, tsω,mmts,mmtsω ,

Let
#»c = [chd].

We have:

((∃σ, r ,mid . chd = chkptCont(σ, r , [],mid)) ∨ chd = fnCont(σ, r , []))

=⇒ #»s , #»c , ts,mmts
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω

=⇒ call-ongoing : (∃ #   »cpfx.
# »cω = #   »cpfx ++

#»c ∧ #»s , [], ts,mmts
tr−→

∗
δ

#»sω,
#   »cpfx, tsω,mmtsω) ∨

call-done : (∃ #»sr ,
#»cr , ts r,mmts r, e.

#»s , [], ts,mmts
tr−→

∗
δ (return e) :: #»sr ,

#»cr , ts r,mmts r ∧

(return e) :: #»sr ,
#»cr ++

#»c , ts r,mmts r
[]−→δ

#»sω,
# »cω, tsω,mmtsω ∧

#»sω = [] ∧ # »cω = []) .

Proof Sketch. Straightforward by induction on the transitions.
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tr1 ∼ tr2

(refine-empty)

[] ∼ []

(refine-both)

tr1 ∼ tr2

tr1 ++ [ev ] ∼ tr2 ++ [ev ]

(refine-read)

tr1 ∼ tr2

tr1 ∼ tr2 ++ [R(l , v)]

Figure B.15: Refinement rule of two traces.

B.6.4 Semantics and Type System Properties

Lemma B.6.14 (Monotonically Increasing Time). For any δ, #»s , tr, #»sω,
# »cω, ts, tsω,mmts,mmtsω ,

We have:

#»s , #»c , ts,mmts
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω

=⇒ ts.time ≤ tsω.time .

Proof Sketch. Straightforward by induction on the transitions.

Lemma B.6.15 (Function Environment Lookup). For any δ,∆, labs, #»s ,

We have:

⊢ δ : ∆

=⇒ f ∈ dom(∆)

=⇒ ∃ #        »prms, #»sf . δ(f ) = ( #        »prms, #»sf ) .

Proof Sketch. Straightforward by induction on the derivation of ⊢ δ : ∆.

Definition B.6.16 (Stop). We define:

STOP( #»s , #»c )
△
= ( #»s = [] ∧ #»c = [])

∨ (∃ #    »srem.
#»s = (break) :: #    »srem ∧ #»c = [])

∨ (∃ #    »srem, e.
#»s = (continue e) :: #    »srem ∧ #»c = [])

∨ (∃ #    »srem, e.
#»s = (return e) :: #    »srem ∧ Loops( #»c )) .

Lemma B.6.17 (Stop means No Step). For any tr, #»s1,
#»c1, ts1,mmts1,

#»s2,
#»c2, ts2,mmts2,

We have:

STOP( #»s1,
#»c1)

=⇒ #»s1,
#»c1, ts1,mmts1 −→δ

#»s2,
#»c2, ts2,mmts2

=⇒ False .

Proof Sketch. Straightforward from the definition.

B.6.5 Proof of the Detectability Theorem

Definition B.6.18 (Behavior). Let p be a program. Let BE(p)
△
= {tr | ∃M. init(p)

tr→
∗
p M} be the set of

behaviors of p. Let B(p)
△
= {tr | ∃M. init(p)

tr⇒
∗
p M} be the set of crash-free behaviors of p, where tr⇒p is the

relation of machine-step.
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Definition B.6.19 (Trace Refinement). Trace tr1 refines tr2, denoted by tr1 ∼ tr2, if we can reach tr1 from

tr2 by only removing read events. Formally, trace refinement is defined in Fig. B.15.

Lemma B.6.20 (Crash-Free Interleaving). Let p = [δ] #»s1 || . . . || #»sn be a program and b be a behavior. Then

b ∈ B(p) if and only if:

∃tr,mem, {tri}i, { #    »si,ω}i, { #    »ci,ω}i, {tsi,ω}i, {mmtsi,ω}i.

meminit
tr−→

∗
mem

∧ tr is an interleaving of tr1, · · · , trn

∧ ∀i. #»si, [], ts init,mmts init
tri−−→

∗
δ

#    »si,ω,
#    »ci,ω, tsi,ω,mmtsi,ω

∧ b ∼ tr .

Proof Sketch. Essentially, this lemma holds because thread transitions are communicating with the other
threads and memory only via traces.

Lemma B.6.21 (Interleaving). Let p = [δ] #»s1 || . . . || #»sn be a program and b be a behavior. Then b ∈ BE(p)

if and only if:

∃tr,mem, {tri}i, { #    »si,ω}i, { #    »ci,ω}i, {tsi,ω}i, {mmtsi,ω}i.

meminit
tr−→

∗
mem

∧ tr is an interleaving of tr1, · · · , trn

∧ ∀i. #»si, [], ts init,mmts init
tri−−→

E∗
δ

#    »si,ω,
#    »ci,ω, tsi,ω,mmtsi,ω

∧ b ∼ tr ,

where
tr−→
E
δ is defined as the union of

tr−→δ and the thread crash step that initializes s, c, and ts as described in

machine-crash.

Proof Sketch. Essentially the same with Theorem B.6.20.

Definition B.6.22 (Deterministic Replay). For a function environment δ ∈ Env and a list of statements

#»s ∈ #       »

Stmt, #»s is deterministically replayed for δ, denoted by DR(δ, #»s ), if the following holds:

∀tr, tr, #»sω,
#»sω,

# »cω,
# »cω, ts , tsω, tsω,mmts ,mmtsω,mmtsω.

#»s , [], ts ,mmts
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω −→ #»s , [], ts ,mmtsω

tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω −→

∃trx , #»sx ,
#»cx , tsx .

#»s , [], ts ,mmts
trx−−→

∗
δ

#»sx ,
#»cx , tsx ,mmtsω ∧ trx ∼ tr ++ tr ∧

(STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx ∧ mmtsω = mmtsω ∧ [] ∼ tr) ∧

(STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx ) .

Lemma B.6.23 (Determistic Replay of Read-Write Statements). For any δ,∆, labs, #»s , if we have ⊢ δ : ∆

and ∆ ⊢labs
#»s , then DR(δ, #»s ).

We defer its proof to §B.6.6.

Theorem B.6.24 (Detectability, Restatement of Theorem 3.3.1). Given a program p, if ⊢ p holds, then

BE(p) ⊆ B(p).
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Proof. Suppose b ∈ BE(p). From Theorem B.6.21, we have:

∃tr,mem, {tri}i, { #    »si,ω}i, { #    »ci,ω}i, {tsi,ω}i, {mmtsi,ω}i.

∧ meminit
tr−→

∗
mem

∧ tr is an interleaving of tr1, · · · , trn

∧ ∀i. #»si, [], ts init,mmts init
tri−−→

E∗
δ

#    »si,ω,
#    »ci,ω, tsi,ω,mmtsi,ω

∧ b ∼ tr .

Pick any i whose execution, #»si, [], ts init,mmts init
tri−−→

E∗
δ

#    »si,ω,
#    »ci,ω, tsi,ω,mmtsi,ω , involves crash steps. We

apply Theorem B.6.23 to obtain a transition, say

#»si, [], ts init,mmts init
tr′i−−→

E∗
δ

#      »si,ω′ , #     »ci,ω′ , tsi,ω′ ,mmtsi,ω′ , with fewer crash steps and tr′i ∼ tr. By inductively
performing these steps, we obtain:

∃{tr′i}i,

∀i. #»si, [], ts init,mmts init
tr′i−−→

∗

δ
#    »si,ω,

#    »ci,ω, tsi,ω,mmtsi,ω

∧ ∀i. tr′i ∼ tri .

Then we interleave {tr′i} to tr′ in such a say that tr′ ∼ tr. Since memory transition is closed under trace
refinement, we have meminit

tr′−−→
∗
mem. From b has no read events, we also have b ∼ tr′.

We conclude this proof by applying Theorem B.6.21 for tr′ and {tr′i} to obtain b ∈ B(p).

B.6.6 Proof of the Deterministic Replay Lemma

Lemma B.6.25 (Read-Only Statements). For any δ,∆, #»s , tr, #»sω,
# »cω, ts, tsω,mmts,mmtsω ,

We have:

⊢ δ : ∆

=⇒ ∆ ⊢RO
#»s

=⇒ #»s , [], ts,mmts
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω

=⇒ [] ∼ tr ∧ mmts = mmtsω .

Proof Sketch. Straightforward by induction on the derivation of ∆ ⊢RO
#»s .

Now we prove Theorem B.6.23: deterministic replay of well-typed read-write statements. By induction on
the derivation of ⊢ δ : ∆, it is sufficient to prove the following lemma (with an additional premise on ∆):

Lemma B.6.26 (Determistic Replay of Read-Write Statements, Inductively). For any δ,∆, labs, #»s , We

have:

⊢ δ : ∆

=⇒ ∆ ⊢labs
#»s

=⇒ (∀f , #        »prms, #»sf .∆(f ) = RW −→ δ(f ) = ( #        »prms, #»sf ) −→ DR(δ, #»sf ))

=⇒ DR(δ, #»s ) .

Proof. We prove by induction on the derivation of ∆ ⊢labs
#»s .
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• For the case that there are empty transitions:

By assumption, we have:

▷ FNJ: ⊢ δ : ∆

▷ FNDR: ∀f , #        »prms, #»sf .∆(f ) = RW −→ δ(f ) = ( #        »prms, #»sf ) −→ DR(δ, #»sf )

▷ EX1: #»s , [], ts ,mmts
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω

▷ EX2: #»s , [], ts ,mmtsω
tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

This is for the case that either EX1 or EX2 is empty transitions.

We aim to prove the following goals: ∃trx , #»sx ,
#»cx , tsx .

(1) #»s , [], ts ,mmts
trx−−→

∗
δ

#»sx ,
#»cx , tsx ,mmtsω

(2) trx ∼ tr ++ tr

(3) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx ∧ mmtsω = mmtsω ∧ [] ∼ tr

(4) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx

◦ EX1 is empty:

We have #»s , [], ts ,mmts = #»sω,
# »cω, tsω,mmtsω ∧ tr = [].

We prove the goals with trx = tr, #»sx = #»sω,
#»cx = # »cω, tsx = tsω as follows:

(1) #»s , [], ts ,mmts
tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

(2) tr ∼ [] ++ tr

(3) If STOP( #»s , []), #»s should be [], continue , break or return . By Theorem B.6.17, we have: #»sω =
#»sω ∧ # »cω = # »cω ∧ tsω = tsω ∧ mmtsω = mmtsω ∧ [] ∼ tr = []

(4) #»sω = #»sω ∧ # »cω = # »cω ∧ tsω = tsω

◦ EX2 is empty:

We have #»s , [], ts ,mmtsω = #»sω,
# »cω, tsω,mmtsω ∧ tr = [].

We prove the goals with trx = tr, #»sx = #»sω,
#»cx = # »cω, tsx = tsω as follows:

(1) #»s , [], ts ,mmts
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω

(2) tr ∼ tr ++ []

(3) #»sω = #»sω ∧ # »cω = # »cω ∧ tsω = tsω ∧ mmtsω = mmtsω ∧ [] ∼ []

(4) If STOP( #»s , []), #»s should be [], continue , break or return . By Theorem B.6.17, we have: #»sω =
#»sω ∧ # »cω = # »cω ∧ tsω = tsω

For the rest cases, we assume both of EX1 and EX2 are not empty.

• (empty, break, continue, return):

By assumption, we have:

▷ FNJ: ⊢ δ : ∆

▷ FNDR: ∀f , #        »prms, #»sf .∆(f ) = RW −→ δ(f ) = ( #        »prms, #»sf ) −→ DR(δ, #»sf )
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▷ EX1: #»s , [], ts ,mmts
tr−→

+

δ
#»sω,

# »cω, tsω,mmtsω

▷ EX2: #»s , [], ts ,mmtsω
tr
−→

+

δ
#»sω,

# »cω, tsω,mmtsω

For these cases, we have STOP( #»s , []). This contradicts EX1 and EX2 by Theorem B.6.17.

• (assign):

By assumption, we have:

▷ FNJ: ⊢ δ : ∆

▷ FNDR: ∀f , #        »prms, #»sf .∆(f ) = RW −→ δ(f ) = ( #        »prms, #»sf ) −→ DR(δ, #»sf )

▷ EX1: [r := e], [], ts ,mmts
tr−→

+

δ
#»sω,

# »cω, tsω,mmtsω

▷ EX2: [r := e], [], ts ,mmtsω
tr
−→

+

δ
#»sω,

# »cω, tsω,mmtsω

We aim to prove the following goals: ∃trx , #»sx ,
#»cx , tsx .

(1) [r := e], [], ts ,mmts
trx−−→

∗
δ

#»sx ,
#»cx , tsx ,mmtsω

(2) trx ∼ tr ++ tr

(3) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx ∧ mmtsω = mmtsω ∧ [] ∼ tr

(4) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx

From EX1 and EX2, there exists #»s1,
#»c1, ts1,mmts1,

#»s1,
#»c1, ts1,mmts1 such that:

▷ [r := e], [], ts ,mmts −→δ
#»s1,

#»c1, ts1,mmts1
tr1−−→

∗
δ

#»sω,
# »cω, tsω,mmtsω

▷ [r := e], [], ts ,mmtsω −→δ
#»s1,

#»c1, ts1,mmts1
tr1−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

Since the only possible first steps are assign, we have:

▷ [r := e], [], ts ,mmts
[]−→δ [], [], ts1,mmts

tr−→
∗
δ

#»sω,
# »cω, tsω,mmtsω

▷ [r := e], [], ts ,mmtsω
[]−→δ [], [], ts1,mmtsω

tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

Let v = ts .regs(e). We have: ts1 = ts [regs 7→ ts .regs[r 7→ v ]] = ts1.

From STOP([], []) and Theorem B.6.17, we have:

▷ ([], [], ts1,mmts ) = ( #»sω,
# »cω, tsω,mmtsω) and tr = []

▷ ([], [], ts1,mmtsω) = ( #»sω,
# »cω, tsω,mmtsω) and tr = []

We prove the goals with trx = [], #»sx = [], #»cx = [], tsx = ts1 as follows:

(1) [r := e], [], ts ,mmts
[]−→

∗

δ [], [], ts1,mmts

(2) [] ∼ [] ++ []

(3) [] = [] ∧ [] = [] ∧ ts1 = ts1 ∧ mmts = mmts ∧ [] ∼ []

(4) [] = [] ∧ [] = [] ∧ ts1 = ts1
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• (if-then-else):

By assumption, we have:

▷ FNJ: ⊢ δ : ∆

▷ FNDR: ∀f , #        »prms, #»sf .∆(f ) = RW −→ δ(f ) = ( #        »prms, #»sf ) −→ DR(δ, #»sf )

▷ EX1: [if (e) #»st
#»sf ], [], ts ,mmts

tr−→
+

δ
#»sω,

# »cω, tsω,mmtsω

▷ EX2: [if (e) #»st
#»sf ], [], ts ,mmtsω

tr
−→

+

δ
#»sω,

# »cω, tsω,mmtsω

For this case, we have:

▷ T : ∆ ⊢labst
#»st

▷ F : ∆ ⊢labs f
#»sf

▷ IHt: ∀tr, tr, #»sω,
#»sω,

# »cω,
# »cω, ts, tsω, tsω,mmts,mmtsω,mmtsω.

#»st , [], ts ,mmts
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω −→

#»st , [], ts ,mmtsω
tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω −→
∃trht, # »sht,

# »cht, tsht.
#»st , [], ts ,mmts

trht−−→
∗
δ

# »sht,
# »cht, tsht,mmtsω ∧

trht ∼ tr ++ tr ∧
(STOP( #»sω,

# »cω) −→ #»sω = # »sht ∧ # »cω = # »cht ∧ tsω = tsht ∧ mmtsω = mmtsω ∧ [] ∼ tr) ∧
(STOP( #»sω,

# »cω) −→ #»sω = # »sht ∧ # »cω = # »cht ∧ tsω = tsht)

▷ IHf : ∀tr, tr, #»sω,
#»sω,

# »cω,
# »cω, ts, tsω, tsω,mmts,mmtsω,mmtsω.

#»sf , [], ts ,mmts
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω −→

#»sf , [], ts ,mmtsω
tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω −→
∃trhf , # »shf ,

#  »chf , tshf .
#»sf , [], ts ,mmts

trhf−−→
∗
δ

# »shf ,
#  »chf , tshf ,mmtsω ∧

trhf ∼ tr ++ tr ∧
(STOP( #»sω,

# »cω) −→ #»sω = # »shf ∧ # »cω = #  »chf ∧ tsω = tshf ∧ mmtsω = mmtsω ∧ [] ∼ tr) ∧
(STOP( #»sω,

# »cω) −→ #»sω = # »shf ∧ # »cω = #  »chf ∧ tsω = tshf)

We aim to prove the following goals: ∃trx , #»sx ,
#»cx , tsx .

(1) [if (e) #»st
#»sf ], [], ts ,mmts

trx−−→
∗
δ

#»sx ,
#»cx , tsx ,mmtsω

(2) trx ∼ tr ++ tr

(3) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx ∧ mmtsω = mmtsω ∧ [] ∼ tr

(4) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx

From EX1 and EX2, there exists #»s1,
#»c1, ts1,mmts1,

#»s1,
#»c1, ts1,mmts1 such that:

▷ [if (e) #»st
#»sf ], [], ts ,mmts −→δ

#»s1,
#»c1, ts1,mmts1

tr1−−→
∗
δ

#»sω,
# »cω, tsω,mmtsω

▷ [if (e) #»st
#»sf ], [], ts ,mmtsω −→δ

#»s1,
#»c1, ts1,mmts1

tr1−−→
∗

δ
#»sω,

# »cω, tsω,mmtsω

The only possible first steps are branch. Without loss of generality, we assume ts .regs(e) = true. Then
we have:
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▷ [if (e) #»st
#»sf ], [], ts ,mmts

[]−→δ
#»st , [], ts ,mmts

tr−→
∗
δ

#»sω,
# »cω, tsω,mmtsω

▷ [if (e) #»st
#»sf ], [], ts ,mmtsω

[]−→δ
#»st , [], ts ,mmtsω

tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

From IHt, we have: ∃trht, # »sht,
# »cht, tsht.

#»st , [], ts ,mmts
trht−−→

∗
δ

# »sht,
# »cht, tsht,mmtsω ∧

trht ∼ tr ++ tr ∧
(STOP( #»sω,

# »cω) −→ #»sω = # »sht ∧ # »cω = # »cht ∧ tsω = tsht ∧ mmtsω = mmtsω ∧ [] ∼ tr) ∧
(STOP( #»sω,

# »cω) −→ #»sω = # »sht ∧ # »cω = # »cht ∧ tsω = tsht)

We prove the goals with trx = trht,
#»sx = # »sht,

#»cx = # »cht, tsx = tsht as follows:

(1) [if (e) #»st
#»sf ], [], ts ,mmts

trht−−→
∗
δ

# »sht,
# »cω,

# »cht, tsht,mmtsω

(2) trht ∼ tr ++ []

(3) STOP( #»sω,
# »cω) −→ #»sω = # »sht ∧ # »cω = # »cht ∧ tsω = tsht ∧ mmts = mmtsω ∧ [] ∼ tr

(4) STOP( #»sω,
# »cω) −→ #»sω = # »sht ∧ # »cω = # »cht ∧ tsω = tsht

• (cas):

By assumption, we have:

▷ FNJ: ⊢ δ : ∆

▷ FNDR: ∀f , #        »prms, #»sf .∆(f ) = RW −→ δ(f ) = ( #        »prms, #»sf ) −→ DR(δ, #»sf )

▷ EX1: [r := pcas(eloc, eold, enew,mid.lab)], [], ts ,mmts
tr−→

+

δ
#»sω,

# »cω, tsω,mmtsω

▷ EX2: [r := pcas(eloc, eold, enew,mid.lab)], [], ts ,mmtsω
tr
−→

+

δ
#»sω,

# »cω, tsω,mmtsω

We aim to prove the following goals: ∃trx , #»sx ,
#»cx , tsx .

(1) [r := pcas(eloc, eold, enew,mid.lab)], [], ts ,mmts
trx−−→

∗
δ

#»sx ,
#»cx , tsx ,mmtsω

(2) trx ∼ tr ++ tr

(3) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx ∧ mmtsω = mmtsω ∧ [] ∼ tr

(4) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx

From EX1 and EX2, there exists #»s1,
#»c1, ts1,mmts1,

#»s1,
#»c1, ts1,mmts1 such that:

▷ EXB1: [r := pcas(eloc, eold, enew,mid.lab)], [], ts ,mmts −→δ
#»s1,

#»c1, ts1,mmts1
tr1−−→

∗
δ

#»sω,
# »cω, tsω,mmtsω

▷ EXB2: [r := pcas(eloc, eold, enew,mid.lab)], [], ts ,mmtsω −→δ
#»s1,

#»c1, ts1,mmts1
tr1−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

Let mid = ts .regs(mid.lab).

We do a case analysis on EXB1’s transition [r := pcas(eloc, eold, enew,mid.lab)], [], ts ,mmts

−→δ
#»s1,

#»c1, ts1,mmts1: cas-succ, cas-fail, or cas-replay.
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◦ (cas-succ):

For this sub-case, we have:

[r := pcas(eloc, eold, enew,mid.lab)], [], ts ,mmts
[ev ]−−→δ [], [], ts1,mmts1

tr1−−→
∗
δ

#»sω,
# »cω, tsω,mmtsω ,

where
ev = U(l , vold, vnew), ts .regs(eloc) = l , ts .regs(eold) = vold, ts .regs(enew) = vnew, tr = [ev ] ++ tr1 .

From STOP([], []) and Theorem B.6.17, we have:

([], [], ts1,mmts1) = ( #»sω,
# »cω, tsω,mmtsω) and tr = [ev ].

From ts .time < mmts1[mid ].time, EX2 can first take only a cas-replay step. So we have:

[r := pcas(eloc, eold, enew,mid.lab)], [], ts ,mmts1
[]−→δ [], [], ts1,mmts1

tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω .

From STOP([], []) and Theorem B.6.17, we have:

([], [], ts1,mmts1) = ( #»sω,
# »cω, tsω,mmtsω) and tr = [].

From ts1.regs(r) = mmts1[mid ].val = ts1.regs(r) and ts1.time = mmts1[mid ].time = ts1.time, we
have:

ts1 = ts1 .

We prove the goals with trx = [ev ], #»sx = [], #»cx = [], tsx = ts1 as follows:

(1) [r := pcas(eloc, eold, enew,mid.lab)], [], ts ,mmts
[ev ]−−→

∗

δ [], [], ts1,mmts1

(2) [ev ] ∼ [ev ] ++ []

(3) [] = [] ∧ [] = [] ∧ ts1 = ts1 ∧ mmts1 = mmts1 ∧ [] ∼ []

(4) [] = [] ∧ [] = [] ∧ ts1 = ts1

◦ (cas-fail):

For this sub-case, we have:

[r := pcas(eloc, eold, enew,mid.lab)], [], ts ,mmts
[ev ]−−→δ [], [], ts1,mmts1

tr1−−→
∗
δ

#»sω,
# »cω, tsω,mmtsω ,

where ev = R(l , v), ts .regs(eloc) = l , ts1.regs(r) = (false, v), tr = [ev ] ++ tr1 .

From STOP([], []) and Theorem B.6.17, we have:

([], [], ts1,mmts1) = ( #»sω,
# »cω, tsω,mmtsω) and tr = [ev ] .

From ts .time < mmts1(mid).time, EX2 can first take only a cas-replay step. So we have:

[r := pcas(eloc, eold, enew,mid.lab)], [], ts ,mmts1
[]−→δ [], [], ts1,mmts1

tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω .

From STOP([], []) and Theorem B.6.17, we have:

([], [], ts1,mmts1) = ( #»sω,
# »cω, tsω,mmtsω) and tr = [] .
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From ts1.regs(r) = mmts1[mid ].val = ts1.regs(r) and ts1.time = mmts1[mid ].time = ts1.time, we
have:

ts1 = ts1.

We prove the goals with trx = [ev ], #»sx = [], #»cx = [], tsx = ts1 as follows:

(1) [r := pcas(eloc, eold, enew,mid.lab)], [], ts ,mmts
[ev ]−−→

∗

δ [], [], ts1,mmts1

(2) [ev ] ∼ [ev ] ++ []

(3) [] = [] ∧ [] = [] ∧ ts1 = ts1 ∧ mmts1 = mmts1 ∧ [] ∼ []

(4) [] = [] ∧ [] = [] ∧ ts1 = ts1

◦ (cas-replay):

For this sub-case, we have:

[r := pcas(eloc, eold, enew,mid.lab)], [], ts ,mmts
[]−→δ [], [], ts1,mmts

tr−→
∗
δ

#»sω,
# »cω, tsω,mmtsω .

From STOP([], []) and Theorem B.6.17, we have:

([], [], ts1,mmts ) = ( #»sω,
# »cω, tsω,mmtsω) and tr = [] .

From mmtsω = mmts and ts .time < mmts [mid ].time, tr can first take only a cas-replay step. So we
have:

[r := pcas(eloc, eold, enew,mid.lab)], [], ts ,mmts
[]−→δ [], [], ts1,mmts

tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω .

From STOP([], []) and Theorem B.6.17, we have:

([], [], ts1,mmts ) = ( #»sω,
# »cω, tsω,mmtsω) and tr = [] .

From ts1.regs(r) = mmts [mid ].val = ts1.regs(r) and ts1.time = mmts [mid ].time = ts1.time, we
have:

ts1 = ts1 .

We prove the goals with trx = [], #»sx = [], #»cx = [], tsx = ts1 as follows:

(1) [r := pcas(eloc, eold, enew,mid.lab)], [], ts ,mmts
[]−→

∗

δ [], [], ts1,mmts

(2) [] ∼ [] ++ []

(3) [] = [] ∧ [] = [] ∧ ts1 = ts1 ∧ mmts1 = mmts1 ∧ [] ∼ []

(4) [] = [] ∧ [] = [] ∧ ts1 = ts1

• (let-chkpt):

By assumption, we have:

▷ FNJ: ⊢ δ : ∆

▷ FNDR: ∀f , #        »prms, #»sf .∆(f ) = RW −→ δ(f ) = ( #        »prms, #»sf ) −→ DR(δ, #»sf )
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▷ EX1: [r := chkpt( #»s ,mid.lab)], [], ts ,mmts
tr−→

+

δ
#»sω,

# »cω, tsω,mmtsω

▷ EX2: [r := chkpt( #»s ,mid.lab)], [], ts ,mmtsω
tr
−→

+

δ
#»sω,

# »cω, tsω,mmtsω

For this case, we have:

▷ RO: ∆ ⊢RO
#»s

We aim to prove the following goals: ∃trx , #»sx ,
#»cx , tsx .

(1) [r := chkpt( #»s ,mid.lab)], [], ts ,mmts
trx−−→

∗
δ

#»sx ,
#»cx , tsx ,mmtsω

(2) trx ∼ tr ++ tr

(3) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx ∧ mmtsω = mmtsω ∧ [] ∼ tr

(4) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx

From EX1 and EX2, there exists #»s1,
#»c1, ts1,mmts1,

#»s1,
#»c1, ts1,mmts1 such that:

▷ EXB1: [r := chkpt( #»s ,mid.lab)], [], ts ,mmts −→δ
#»s1,

#»c1, ts1,mmts1
tr1−−→

∗
δ

#»sω,
# »cω, tsω,mmtsω

▷ EXB2: [r := chkpt( #»s ,mid.lab)], [], ts ,mmtsω −→δ
#»s1,

#»c1, ts1,mmts1
tr1−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

Let mid = ts .regs(mid.lab).

We do a case analysis on EXB1’s transition [r := chkpt( #»s ,mid.lab)], [], ts ,mmts −→δ
#»s1,

#»c1, ts1,mmts1:
chkpt-call or chkpt-replay.

◦ (chkpt-call):
For this sub-case, we have:
[r := chkpt( #»s ,mid.lab)], [], ts ,mmts

[]−→δ
#»s , #»c1, ts1,mmts

tr−→
∗
δ

#»sω,
# »cω, tsω,mmtsω .

We apply Theorem B.6.13 to the later transitions and do case analysis on the lemma’s conclusion:

· (call-ongoing):
For this sub-case, we have:
∃ #   »cpfx.

# »cω = #   »cpfx ++
#»c1 ∧ #»s , [], ts1,mmts

tr−→
∗
δ

#»sω,
#   »cpfx, tsω,mmtsω .

From RO and Theorem B.6.25, we have:
[] ∼ tr ∧ mmts = mmtsω .

We prove the goals with trx = tr, #»sx = #»sω,
#»cx = # »cω, tsx = tsω as follows:

(1) [r := chkpt( #»s ,mid.lab)], [], ts ,mmts
tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

(2) From [] ∼ tr, we have: tr ∼ tr ++ tr

(3) From # »cω = #   »cpfx ++
#»c1 = #   »cpfx ++ [chkptCont(σ, r , [],mid)], we have: ¬STOP( #»sω,

# »cω)

(4) #»sω = #»sω ∧ # »cω = # »cω ∧ tsω = tsω

· (call-done):
For this sub-case, we have:
∃ #»sr ,

#»cr , ts r,mmts r, e.
#»s , [], ts ,mmts

trr−→
∗
δ (return e) :: #»sr ,

#»cr , ts r,mmts r ∧
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(return e) :: #»sr ,
#»cr ++

#»c1, ts r,mmts r
[]−→δ

#»sω,
# »cω, tsω,mmtsω ∧

#»sω = [] ∧ # »cω = [] .

From ts .time ≤ ts r.time < mmtsω[mid ].time from Theorem B.6.14, EX2 can first take only a
chkpt-replay step. So we have:
[r := chkpt( #»s ,mid.lab)], [], ts ,mmtsω

[]−→δ [], [], ts1,mmtsω
tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω .

From tsω.regs(r) = mmtsω[mid ].val = ts1.regs(r) and tsω.time = mmtsω[mid ].time = ts1.time,
we have:
tsω = ts1 .

From STOP([], []) and Theorem B.6.17, we have:
([], [], tsω,mmtsω) = ( #»sω,

# »cω, tsω,mmtsω) and tr = [].

We prove the goals with trx = tr, #»sx = [], #»cx = [], tsx = tsω as follows:

(1) [r := chkpt( #»s ,mid.lab)], [], ts ,mmts
tr−→

∗
δ [], [], tsω,mmtsω

(2) tr ∼ tr ++ []

(3) [] = [] ∧ [] = [] ∧ tsω = tsω ∧ mmtsω = mmtsω ∧ [] ∼ []

(4) [] = [] ∧ [] = [] ∧ tsω = tsω

◦ (chkpt-replay):
For this sub-case, we have:
[r := chkpt( #»s ,mid.lab)], [], ts ,mmts

[]−→δ [], [], ts1,mmts
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω .

From STOP([], []) an Theorem B.6.17, we have:
([], [], ts1,mmts ) = ( #»sω,

# »cω, tsω,mmtsω) and tr = [] .

From mmtsω = mmts and ts .time < mmts [mid ].time, EX2 can first take only a chkpt-replay step.
So we have:
[r := chkpt( #»s ,mid.lab)], [], ts ,mmts

[]−→δ [], [], ts1,mmts
tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω .

We have:
ts1 = ⟨regs 7→ ts .regs[r 7→ mmts [mid ].val]; time 7→ mmts [mid ].time⟩ = ts1.

From STOP([], []) and Theorem B.6.17, we have:
([], [], ts1,mmts ) = ( #»sω,

# »cω, tsω,mmtsω) and tr = [].

We prove the goals with trx = [], #»sx = [], #»cx = [], tsx = ts1 as follows:

(1) [r := chkpt( #»s ,mid.lab)], [], ts ,mmts
[]−→

∗

δ [], [], ts1,mmts

(2) [] ∼ [] ++ []

(3) [] = [] ∧ [] = [] ∧ ts1 = ts1 ∧ mmts1 = mmts1 ∧ [] ∼ []

(4) [] = [] ∧ [] = [] ∧ ts1 = ts1
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• (seq):

By assumption, we have:

▷ FNJ: ⊢ δ : ∆

▷ FNDR: ∀f , #        »prms, #»sf .∆(f ) = RW −→ δ(f ) = ( #        »prms, #»sf ) −→ DR(δ, #»sf )

▷ EX1: #»sl ++
#»sr , [], ts ,mmts

tr−→
+

δ
#»sω,

# »cω, tsω,mmtsω

▷ EX2: #»sl ++
#»sr , [], ts ,mmtsω

tr
−→

+

δ
#»sω,

# »cω, tsω,mmtsω

For this case, we have:

▷ L: ∆ ⊢labs l
#»sl

▷ R: ∆ ⊢labs r
#»sr

▷ DISJ : labs l ∩ labs r = ∅

▷ IHl: ∀tr, tr, #»sω,
#»sω,

# »cω,
# »cω, ts, tsω, tsω,mmts,mmtsω,mmtsω.

#»sl , [], ts ,mmts
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω −→

#»sl , [], ts ,mmtsω
tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω −→
∃trhl, # »shl,

# »chl, tshl.
#»sl , [], ts ,mmts

trhl−−→
∗
δ

# »shl,
# »chl, tshl,mmtsω ∧

trhl ∼ tr ++ tr ∧
(STOP( #»sω,

# »cω) −→ #»sω = # »shl ∧ # »cω = # »chl ∧ tsω = tshl ∧ mmtsω = mmtsω ∧ [] ∼ tr) ∧
(STOP( #»sω,

# »cω) −→ #»sω = # »shl ∧ # »cω = # »chl ∧ tsω = tshl)

▷ IHr: ∀tr, tr, #»sω,
#»sω,

# »cω,
# »cω, ts, tsω, tsω,mmts,mmtsω,mmtsω.

#»sr , [], ts ,mmts
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω −→

#»sr , [], ts ,mmtsω
tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω −→
∃trhr, # »shr,

# »chr, tshr.
#»sr , [], ts ,mmts

trhr−−→
∗
δ

# »shr,
# »chr, tshr,mmtsω ∧

trhr ∼ tr ++ tr ∧
(STOP( #»sω,

# »cω) −→ #»sω = # »shr ∧ # »cω = # »chr ∧ tsω = tshr ∧ mmtsω = mmtsω ∧ [] ∼ tr) ∧
(STOP( #»sω,

# »cω) −→ #»sω = # »shr ∧ # »cω = # »chr ∧ tsω = tshr)

We aim to prove the following goals: ∃trx , #»sx ,
#»cx , tsx .

(1) #»sl ++
#»sr , [], ts ,mmts

trx−−→
∗
δ

#»sx ,
#»cx , tsx ,mmtsω

(2) trx ∼ tr ++ tr

(3) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx ∧ mmtsω = mmtsω ∧ [] ∼ tr

(4) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx

Let midpfx = ts.regs(mid),

mids l = µ(midpfx, labs l), and
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mids r = µ(midpfx, labs r) .

We apply Theorem B.6.8 both to EX1 and EX2 and do case analysis on the lemma’s conclusion:

◦ (seq-left-done for EX1, seq-left-done for EX2):

For this sub-case, we have:

▷ ∃tr1, tr2, ts1,mmts1. tr = tr1 ++ tr2 ∧
#»sl , [], ts ,mmts

tr1−−→
∗
δ [], [], ts1,mmts1 ∧ #»sr , [], ts1,mmts1

tr2−−→
∗
δ

#»sω,
# »cω, tsω,mmtsω

▷ ∃tr1, tr2, ts1,mmts1. tr = tr1 ++ tr2 ∧
#»sl , [], ts ,mmtsω

tr1−−→
∗

δ [], [], ts1,mmts1 ∧ #»sr , [], ts1,mmts1
tr2−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

From Theorem B.6.7, we have:

▷ mmts1|mids rc = mmtsω|mids rc

▷ mmtsω|mids lc = mmts1|mids lc

▷ mmts1|mids rc = mmtsω|mids rc

▷ #»sl , [], ts ,mmts |mids l
tr1−−→

∗
δ [], [], ts1,mmts1|mids l

▷ #»sl , [], ts ,mmtsω|mids l

tr1−−→
∗

δ [], [], ts1,mmts1|mids l

From DISJ and mmts1|mids rc = mmtsω|mids rc , we have:

mmts1|mids l = mmtsω|mids l .

From IHl, we have:

∃trhl, # »shl,
# »chl, tshl.

#»sl , [], ts ,mmts |mids l
trhl−−→

∗
δ

# »shl,
# »chl, tshl,mmts1|mids l ∧

trhl ∼ tr1 ++ tr1 ∧
(STOP([], []) −→ [] = # »shl ∧ [] = # »chl ∧ ts1 = tshl ∧ mmts1|mids l = mmts1|mids l ∧ [] ∼ tr1) ∧
(STOP([], []) −→ [] = # »shl ∧ [] = # »chl ∧ ts1 = tshl) .

From STOP([], []), we have:

[] = # »shl ∧ [] = # »chl ∧ ts1 = ts1 = tshl ∧ mmts1|mids l = mmts1|mids l ∧ [] ∼ tr1 .

From mmtsω|mids l = mmts1|mids l = mmts1|mids l and mmtsω|mids lc = mmts1|mids lc , we have:

mmtsω = mmts1 .

From IHr, we have:

∃trhr, # »shr,
# »chr, tshr.

#»sr , [], ts1,mmts1
trhr−−→

∗
δ

# »shr,
# »chr, tshr,mmtsω ∧

trhr ∼ tr2 ++ tr2 ∧
(STOP( #»sω,

# »cω) −→ #»sω = # »shr ∧ # »cω = # »chr ∧ tsω = tshr ∧ mmtsω = mmtsω ∧ [] ∼ tr2) ∧
(STOP( #»sω,

# »cω) −→ #»sω = # »shr ∧ # »cω = # »chr ∧ tsω = tshr) .

We prove the goals with trx = tr1 ++ trhr,
#»sx = # »shr,

#»cx = # »chr, tsx = tshr as follows:
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(1) From Theorem B.6.4, we have:
#»sl ++

#»sr , [], ts ,mmts
tr1−−→

∗
δ

#»sr , [], ts1,mmts1
trhr−−→

∗
δ

# »shr,
# »chr, tshr,mmtsω

(2) From trhr ∼ tr2 ++ tr2, we have: tr1 ++ trhr ∼ tr ++ tr2 .
From [] ∼ tr1, we have: tr1 ++ trhr ∼ tr ++ tr

(3) From [] ∼ tr1, we have: (STOP( #»sω,
# »cω) −→ #»sω = # »shr ∧ # »cω = # »chr ∧ tsω = tshr ∧ mmtsω =

mmtsω ∧ [] ∼ tr)

(4) STOP( #»sω,
# »cω) −→ #»sω = # »shr ∧ # »cω = # »chr ∧ tsω = tshr

◦ (seq-left-done, seq-left-ongoing):

For this sub-case, we have:

▷ ∃tr1, tr2, ts1,mmts1. tr = tr1 ++ tr2 ∧
#»sl , [], ts ,mmts

tr1−−→
∗
δ [], [], ts1,mmts1 ∧ #»sr , [], ts1,mmts1

tr2−−→
∗
δ

#»sω,
# »cω, tsω,mmtsω

▷ ∃ # »sm,
# »cm.

#»sl , [], ts ,mmtsω
tr
−→

∗

δ
# »sm,

# »cm, tsω,mmtsω ∧ ( #»sω,
# »cω) = ( # »sm,

# »cm) ++
#»sr ∧ ( # »sm,

# »cm) ̸= ([], [])

From Theorem B.6.7, we have:

▷ mmts1|mids rc = mmtsω|mids rc

▷ mmtsω|mids lc = mmtsω|mids lc

▷ #»sl , [], ts ,mmts |mids l
tr1−−→

∗
δ [], [], ts1,mmts1|mids l

▷ #»sl , [], ts ,mmtsω|mids l

tr
−→

∗

δ
# »sm,

# »cm, tsω,mmtsω|mids l

From DISJ and mmts1|mids rc = mmtsω|mids rc , we have:

mmts1|mids l = mmtsω|mids l .

From IHl, we have:

∃trhl, # »shl,
# »chl, tshl.

#»sl , [], ts ,mmts |mids l
trhl−−→

∗
δ

# »shl,
# »chl, tshl,mmtsω|mids l ∧

trhl ∼ tr1 ++ tr ∧
(STOP([], []) −→ [] = # »shl ∧ [] = # »chl ∧ ts1 = tshl ∧ mmts1|mids l = mmtsω|mids l ∧ [] ∼ tr) ∧
(STOP( # »sm,

# »cm) −→ # »sm = # »shl ∧ # »cm = # »chl ∧ tsω = tshl) .

From STOP([], []), we have:

[] = # »shl ∧ [] = # »chl ∧ ts1 = tshl ∧ mmts1|mids l = mmtsω|mids l ∧ [] ∼ tr .

From mmtsω|mids l = mmts1|mids l = mmtsω|mids l and mmtsω|mids lc = mmtsω|mids lc , we have:

mmtsω = mmtsω .

From Theorem B.6.7, we have:
#»sl , [], ts ,mmts

trhl−−→
∗
δ [], [], ts1,mmts1 .
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We have ¬STOP( # »sm,
# »cm), because otherwise, from IHl, we have # »sm = # »shl = [] ∧ # »cm = # »chl = [],

contradicting the assumption that ( # »sm,
# »cm) ̸= ([], []).

We prove the goals with trx = tr, #»sx = #»sω,
#»cx = # »cω, tsx = tsω as follows:

(1) #»sl ++
#»sr , [], ts ,mmts

tr−→
∗
δ

#»sω,
# »cω, tsω,mmtsω

(2) From [] ∼ tr, we have: tr ∼ tr ++ tr

(3) #»sω = #»sω ∧ # »cω = # »cω ∧ tsω = tsω ∧ mmtsω = mmtsω ∧ [] ∼ tr

(4) Since ( # »sm,
# »cm) ̸= ([], []) and ¬STOP( # »sm,

# »cm), we have: ¬STOP( #»sω,
# »cω)

◦ (seq-left-ongoing, seq-left-done):

For this sub-case, we have:

▷ ∃ # »sm,
# »cm.

#»sl , [], ts ,mmtsω
tr−→

∗
δ

# »sm,
# »cm, tsω,mmtsω ∧ ( #»sω,

# »cω) = ( # »sm,
# »cm) ++

#»sr ∧ ( # »sm,
# »cm) ̸= ([], [])

▷ ∃tr1, tr2, ts1,mmts1.

tr = tr1 ++ tr2 ∧ #»sl , [], ts ,mmtsω
tr1−−→

∗

δ [], [], ts1,mmts1 ∧
#»sr , [], ts1,mmts1

tr2−−→
∗

δ
#»sω,

# »cω, tsω,mmtsω

From IHl, we have:

∃trhl, # »shl,
# »chl, tshl.

#»sl , [], ts ,mmts
trhl−−→

∗
δ

# »shl,
# »chl, tshl,mmts1 ∧

trhl ∼ tr ++ tr1 ∧
(STOP( # »sm,

# »cm) −→ # »sm = # »shl ∧ # »cm = # »chl ∧ tsω = tshl ∧ mmtsω = mmts1 ∧ [] ∼ tr1) ∧
(STOP([], []) −→ [] = # »shl ∧ [] = # »chl ∧ ts1 = tshl) .

From STOP([], []), we have:

[] = # »shl ∧ [] = # »chl ∧ ts1 = tshl .

We have ¬STOP( # »sm,
# »cm), because otherwise, from IHl, we have # »sm = # »shl = [] ∧ # »cm = # »chl = [],

contradicting the assumption that ( # »sm,
# »sm) ̸= ([], []).

We prove the goals with trx = trhl ++ tr2,
#»sx = #»sω,

#»cx = # »cω, tsx = tsω as follows:

(1) From #»sl , [], ts ,mmts
trhl−−→

∗
δ [], [], ts1,mmts1 and Theorem B.6.4, we have:

#»sl ++
#»sr , [], ts ,mmts

trhl−−→
∗
δ

#»sr , [], ts1,mmts1
tr2−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

(2) From trhl ∼ tr ++ tr1, we have: trhl ++ tr2 ∼ tr ++ tr1 ++ tr2

From tr1 ++ tr2 = tr, we have: trhl ++ tr2 ∼ tr ++ tr

(3) Since ( # »sm,
# »cm) ̸= ([], []) and ¬STOP( # »sm,

# »cm), we have: ¬STOP( #»sω,
# »cω)

(4) #»sω = #»sω ∧ # »cω = # »cω ∧ tsω = tsω

103



◦ (seq-left-ongoing, seq-left-ongoing):

For this case, we have:

▷ ∃ # »sm,
# »cm.

#»sl , [], ts ,mmtsω
tr−→

∗
δ

# »sm,
# »cm, tsω,mmtsω ∧ ( #»sω,

# »cω) = ( # »sm,
# »cm) ++

#»sr ∧ ( # »sm,
# »cm) ̸= ([], [])

▷ ∃ # »sm,
# »cm.

#»sl , [], ts ,mmtsω
tr
−→

∗

δ
# »sm,

# »cm, tsω,mmtsω ∧ ( #»sω,
# »cω) = ( # »sm,

# »cm) ++
#»sr ∧ ( # »sm,

# »cm) ̸= ([], [])

From IHl, we have:

∃trhl, # »shl,
# »chl, tshl.

#»sl , [], ts ,mmts
trhl−−→

∗
δ

# »shl,
# »chl, tshl,mmtsω ∧

trhl ∼ tr ++ tr ∧
(STOP( # »sm,

# »cm) −→ # »sm = # »shl ∧ # »cm = # »chl ∧ tsω = tshl ∧ mmtsω = mmtsω ∧ [] ∼ tr) ∧
(STOP( # »sm,

# »cm) −→ # »sm = # »shl ∧ # »cm = # »chl ∧ tsω = tshl) .

There exists #»sy,
#»cy such that ( #»sy,

#»cy) = ( # »shl,
# »chl) ++

#»sr . Thus we have:
#»sl ++

#»sr , [], ts ,mmts
trhl−−→

∗
δ

#»sy,
#»cy, tshl,mmtsω .

We prove the goals with trx = trhl,
#»sx = #»sy,

#»cx = #»cy, tsx = tshl as follows:

(1) #»sl ++
#»sr , [], ts ,mmts

trhl−−→
∗
δ

#»sy,
#»cy, tshl,mmtsω

(2) trhl ∼ tr ++ tr

(3) Since ( # »sm,
# »cm) ̸= ([], []) and ( #»sω,

# »cω) = ( # »sm,
# »cm) ++

#»sr ,
we have: STOP( #»sω,

# »cω) −→ STOP( # »sm,
# »cm) .

Thus we have: STOP( #»sω,
# »cω) −→ #»sω = #»sy ∧ # »cω = #»cy ∧ tsω = tshl ∧ mmts = mmtsω ∧ [] ∼ tr

(4) Since ( # »sm,
# »cm) ̸= ([], []) and ( #»sω,

# »cω) = ( # »sm,
# »cm) ++

#»sr ,
we have: STOP( #»sω,

# »cω) −→ STOP( # »sm,
# »cm) .

Thus we have: STOP( #»sω,
# »cω) −→ #»sω = #»sy ∧ # »cω = #»cy ∧ tsω = tshl

• (call):

By assumption, we have:

▷ FNJ: ⊢ δ : ∆

▷ FNDR: ∀f , #        »prms, #»sf .∆(f ) = RW −→ δ(f ) = ( #        »prms, #»sf ) −→ DR(δ, #»sf )

▷ EX1: [r := f ( #»e ++ mid.lab)], [], ts ,mmts
tr−→

+

δ
#»sω,

# »cω, tsω,mmtsω

▷ EX2: [r := f ( #»e ++ mid.lab)], [], ts ,mmtsω
tr
−→

+

δ
#»sω,

# »cω, tsω,mmtsω

For this case, we have:

▷ RW : ∆(f ) = RW

We aim to prove the following goals: ∃trx , #»sx ,
#»cx , tsx .

(1) [r := f ( #»e ++ mid.lab)], [], ts ,mmts
trx−−→

∗
δ

#»sx ,
#»cx , tsx ,mmtsω

(2) trx ∼ tr ++ tr
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(3) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx ∧ mmtsω = mmtsω ∧ [] ∼ tr

(4) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx

From EX1 and EX2, there exists #»s1,
#»c1, ts1,mmts1,

#»s1,
#»c1, ts1,mmts1 such that:

▷ [r := f ( #»e ++ mid.lab)], [], ts ,mmts −→δ
#»s1,

#»c1, ts1,mmts1
tr1−−→

∗
δ

#»sω,
# »cω, tsω,mmtsω

▷ [r := f ( #»e ++ mid.lab)], [], ts ,mmtsω −→δ
#»s1,

#»c1, ts1,mmts1
tr1−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

From FNJ, RW, and Theorem B.6.15, we have:

f ∈ dom(∆) and ∃ #        »prms, #»sf . δ(f ) = ( #        »prms, #»sf ) .

Since the only possible first steps are call, we have:

▷ EXB1: [r := f ( #»e ++ mid.lab)], [], ts ,mmts
[]−→δ

#»sf ,
#»c1, ts1,mmts

tr−→
∗
δ

#»sω,
# »cω, tsω,mmtsω

▷ EXB2: [r := f ( #»e ++ mid.lab)], [], ts ,mmtsω
[]−→δ

#»sf ,
#»c1, ts1,mmtsω

tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

Let #»v = ts .regs( #»e ). We have:

▷ #»c1 = [fnCont(ts .regs, r , [])] = #»c1

▷ ts1 = ts
[
regs 7→ ⊔i[prmsi 7→ vi]

]
= ts1

We apply Theorem B.6.13 to the later transitions of EXB1 and EXB2 and do case analysis on the lemma’s
conclusion:

◦ (call-ongoing, call-ongoing):

For this sub-case, we have:

▷ ∃ #   »cpfx.
# »cω = #   »cpfx ++

#»c1 ∧ #»sf , [], ts1,mmts
tr−→

∗
δ

#»sω,
#   »cpfx, tsω,mmtsω

▷ ∃ #   »cpfx.
# »cω = #   »cpfx ++

#»c1 ∧ #»sf , [], ts1,mmtsω
tr
−→

∗

δ
#»sω,

#   »cpfx, tsω,mmtsω

From FNDR, we have:

∃trhf , #  »shf ,
#  »chf , tshf .

#»sf , [], ts1,mmts
trhf−−→

∗

δ
#  »shf ,

#  »chf , tshf ,mmtsω ∧
trhf ∼ tr ++ tr ∧
(STOP( #»sω,

#   »cpfx) −→ #»sω = #  »shf ∧ #   »cpfx =
#  »chf ∧ tsω = tshf ∧ mmtsω = mmtsω ∧ [] ∼ tr) ∧

(STOP( #»sω,
#   »cpfx) −→ #»sω = #  »shf ∧ #   »cpfx =

#  »chf ∧ tsω = tshf ) .

From Theorem B.6.5, we have:
#»sf ,

#»c1, ts1,mmts
trhf−−→

∗

δ
#  »shf ,

#  »chf ++ #»c1, tshf ,mmtsω .

We prove the goals with trx = trhf ,
#»sx = #  »shf ,

#»cx = #  »chf ++ #»c1, tsx = tshf as follows:

(1) [r := f ( #»e ++ mid.lab)], [], ts ,mmts
[]−→δ

#»sf ,
#»c1, ts1,mmts

trhf−−→
∗

δ
#  »shf ,

#  »chf ++ #»c1, tshf ,mmtsω

(2) trhf ∼ tr ++ tr

(3) From # »cω = #   »cpfx ++ [fnCont(ts .regs, r , [])], we have: ¬STOP( #»sω,
# »cω)

(4) From # »cω = #   »cpfx ++ [fnCont(ts .regs, r , [])], we have: ¬STOP( #»sω,
# »cω)
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◦ (call-ongoing, call-done):

For this sub-case, we have:

▷ ∃ #   »cpfx.
# »cω = #   »cpfx ++

#»c1 ∧ #»sf , [], ts1,mmts
tr−→

∗
δ

#»sω,
#   »cpfx, tsω,mmtsω

▷ ∃ #»sr ,
#»cr , ts r,mmts r, e.

#»sf , [], ts1,mmtsω
trr−→

∗

δ (return e) :: #»sr ,
#»cr , ts r,mmts r ∧

(return e) :: #»sr ,
#»cr ++

#»c1, ts r,mmts r
[]−→δ

#»sω,
# »cω, tsω,mmtsω ∧

#»sω = [] ∧ # »cω = []

From FNDR, we have:

∃trhf , #  »shf ,
#  »chf , tshf .

#»sf , [], ts1,mmts
trhf−−→

∗

δ
#  »shf ,

#  »chf , tshf ,mmts r ∧
trhf ∼ tr ++ tr ∧
(STOP( #»sω,

#   »cpfx) −→ #»sω = #  »shf ∧ #   »cpfx =
#  »chf ∧ tsω = tshf ∧ mmtsω = mmts r ∧ [] ∼ tr) ∧

(STOP((return e) :: #»sr ,
#»cr) −→ (return e) :: #»sr =

#  »shf ∧ #»cr =
#  »chf ∧ ts r = tshf ) .

From Loops( #»cr) and STOP((return e) :: #»sr ,
#»cr), we have:

(return e) :: #»sr =
#  »shf ∧ #»cr =

#  »chf ∧ ts r = tshf .

From Theorem B.6.5, we have:
#»sf ,

#»c1, ts1,mmts
trhf−−→

∗

δ (return e) :: #»sr ,
#»cr ++

#»c1, ts r,mmts r .

We prove the goals with trx = trhf ,
#»sx = [], #»cx = [], tsx = tsω as follows:

(1) [r := f ( #»e ++ mid.lab)], [], ts ,mmts
[]−→δ

#»sf ,
#»c1, ts1,mmts

trhf−−→
∗

δ (return e) :: #»sr ,
#»cr ++

#»c1, ts r,mmts r
[]−→δ [], [], tsω,mmtsω

(2) trhf ∼ tr ++ tr

(3) From # »cω = #   »cpfx ++ [fnCont(ts .regs, r , [])], we have: ¬STOP( #»sω,
# »cω)

(4) [] = [] ∧ [] = [] ∧ tsω = tsω

◦ (call-done, call-ongoing):

For this sub-case, we have:

▷ ∃ #»sr ,
#»cr , ts r,mmts r, e.

#»sf , [], ts1,mmts
trr−→

∗
δ (return e) :: #»sr ,

#»cr , ts r,mmts r ∧
(return e) :: #»sr ,

#»cr ++
#»c1, ts r,mmts r

[]−→δ
#»sω,

# »cω, tsω,mmtsω ∧
#»sω = [] ∧ # »cω = []

▷ ∃ #   »cpfx.
# »cω = #   »cpfx ++

#»c1 ∧ #»sf , [], ts1,mmtsω
tr
−→

∗

δ
#»sω,

#   »cpfx, tsω,mmtsω

From FNDR, we have:
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∃trhf , #  »shf ,
#  »chf , tshf .

#»sf , [], ts1,mmts
trhf−−→

∗

δ
#  »shf ,

#  »chf , tshf ,mmtsω ∧
trhf ∼ tr ++ tr ∧
(STOP((return e) :: #»sr ,

#»cr) −→
(return e) :: #»sr =

#  »shf ∧ #»cr =
#  »chf ∧ ts r = tshf ∧ mmts r = mmtsω ∧ [] ∼ tr) ∧

(STOP( #»sω,
#   »cpfx) −→ #»sω = #  »shf ∧ #   »cpfx =

#  »chf ∧ tsω = tshf ) .

From Loops( #»cr) and STOP((return e) :: #»sr ,
#»cr), we have:

(return e) :: #»sr =
#  »shf ∧ #»cr =

#  »chf ∧ ts r = tshf ∧ mmts r = mmtsω ∧ [] ∼ tr .

From Theorem B.6.5, we have:
#»sf ,

#»c1, ts1,mmts
trhf−−→

∗

δ (return e) :: #»sr ,
#»cr ++

#»c1, ts r,mmts r .

From return step, we have:

mmts r = mmtsω .

We prove the goals with trx = tr, #»sx = [], #»cx = [], tsx = tsω as follows:

(1) [r := f ( #»e ++ mid.lab)], [], ts ,mmts
tr−→

∗
δ [], [], tsω,mmts r

(2) From [] ∼ tr, we have: tr ∼ tr ++ tr

(3) [] = [] ∧ [] = [] ∧ tsω = tsω ∧ mmts r = mmtsω ∧ [] ∼ tr

(4) From # »cω = #   »cpfx ++ [fnCont(ts .regs, r , [])], we have: ¬STOP( #»sω,
# »cω)

◦ (call-done, call-done):

For this sub-case, we have:

▷ ∃ #»sr ,
#»cr , ts r,mmts r, e.

#»sf , [], ts1,mmts
trr−→

∗
δ (return e) :: #»sr ,

#»cr , ts r,mmts r ∧
(return e) :: #»sr ,

#»cr ++
#»c1, ts r,mmts r

[]−→δ
#»sω,

# »cω, tsω,mmtsω ∧
#»sω = [] ∧ # »cω = []

▷ ∃ #»sr ,
#»cr , ts r,mmts r, e.

#»sf , [], ts1,mmtsω
trr−→

∗

δ (return e) :: #»sr ,
#»cr , ts r,mmts r ∧

(return e) :: #»sr ,
#»cr ++

#»c1, ts r,mmts r
[]−→δ

#»sω,
# »cω, tsω,mmtsω ∧

#»sω = [] ∧ # »cω = []

From FNDR, we have:

∃trhf , #  »shf ,
#  »chf , tshf .

#»sf , [], ts1,mmts
trhf−−→

∗

δ
#  »shf ,

#  »chf , tshf ,mmts r ∧
trhf ∼ tr ++ tr ∧
(STOP((return e) :: #»sr ,

#»cr) −→
(return e) :: #»sr =

#  »shf ∧ #»cr =
#  »chf ∧ ts r = tshf ∧ mmts r = mmts r ∧ [] ∼ tr) ∧
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(STOP((return e) :: #»sr ,
#»cr) −→ (return e) :: #»sr =

#  »shf ∧ #»cr =
#  »chf ∧ ts r = tshf ) .

From Loops( #»cr), STOP((return e) :: #»sr ,
#»cr), Loops( #»cr) and STOP((return e) :: #»sr ,

#»cr), we have:

(return e) :: #»sr =
#  »shf ∧ #»cr =

#  »chf ∧ ts r = ts r = tshf ∧ mmts r = mmts r ∧ [] ∼ tr .

From Theorem B.6.5, we have:
#»sf ,

#»c1, ts1,mmts
trhf−−→

∗

δ (return e) :: #»sr ,
#»cr ++

#»c1, ts r,mmts r .

From return step, we have:

▷ Let v = ts r.regs(e). We have tsω = ts r [regs 7→ ts .regs [r 7→ v ]] = tsω .

▷ mmts r = mmtsω = mmtsω

We prove the goals with trx = trhf ,
#»sx = [], #»cx = [], tsx = tsω as follows:

(1) [r := f ( #»e ++ mid.lab)], [], ts ,mmts
[]−→δ

#»sf ,
#»c1, ts1,mmts

trhf−−→
∗

δ (return e) :: #»sr ,
#»cr ++

#»c1, ts r,mmts r
[]−→δ [], [], tsω,mmts r

(2) trhf ∼ tr ++ tr

(3) [] = [] ∧ [] = [] ∧ tsω = tsω ∧ mmts r = mmts r ∧ [] ∼ tr

(4) [] = [] ∧ [] = [] ∧ tsω = tsω

• (loop-simple):

This case is a simplification of the next case for (loop).

• (loop):

By assumption, we have:

▷ FNJ: ⊢ δ : ∆

▷ FNDR: ∀f , #        »prms, #»sf .∆(f ) = RW −→ δ(f ) = ( #        »prms, #»sf ) −→ DR(δ, #»sf )

▷ EX1: [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts
tr−→

+

δ
#»sω,

# »cω, tsω,mmtsω

▷ EX2: [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmtsω
tr
−→

+

δ
#»sω,

# »cω, tsω,mmtsω

For this case, we have:

▷ BODY : ∆ ⊢labs
#»s

▷ NIN : lab /∈ labs

▷ IH : ∀tr, tr, #»sω,
#»sω,

# »cω,
# »cω, ts, tsω, tsω,mmts,mmtsω,mmtsω.

#»s , [], ts ,mmts
tr−→

∗
δ

#»sω,
# »cω, tsω,mmtsω −→

#»s , [], ts ,mmtsω
tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω −→
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts ,mmts

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmtsω ∧
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trh ∼ tr ++ tr ∧
(STOP( #»sω,

# »cω) −→ #»sω = #»sh ∧ # »cω = #»ch ∧ tsω = tsh ∧ mmtsω = mmtsω ∧ [] ∼ tr) ∧
(STOP( #»sω,

# »cω) −→ #»sω = #»sh ∧ # »cω = #»ch ∧ tsω = tsh)

We aim to prove the following goals: ∃trx , #»sx ,
#»cx , tsx .

(1) [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts
trx−−→

∗
δ

#»sx ,
#»cx , tsx ,mmtsω

(2) trx ∼ tr ++ tr

(3) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx ∧ mmtsω = mmtsω ∧ [] ∼ tr

(4) STOP( #»sω,
# »cω) −→ #»sω = #»sx ∧ # »cω = #»cx ∧ tsω = tsx

From EX1 and EX2, there exists #»s1,
#»c1, ts1,mmts1,

#»s1,
#»c1, ts1,mmts1 such that:

▷ [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts

−→δ
#»sb,

#»cb, tsb,mmtsb
trb−−→

∗
δ

#»sω,
# »cω, tsω,mmtsω

▷ [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmtsω

−→δ
#»sb,

#»cb, tsb,mmtsb
trb−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

Let midpfx = ts.regs(mid) and mids = µ(midpfx, labs) .

Since the only possible first steps are loop, we have:

▷ EXB1: [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts
[]−→δ (r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmts

tr−→
∗
δ

#»sω,
# »cω, tsω,mmtsω

▷ EXB2: [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmtsω
[]−→δ (r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω

tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

If EXB2’s later transitions are empty, the proof is essentially the same with the case that EX2 itself is empty
transitions (the entire proof’s first case). From now on, we prove for the case that EXB2’s later transitions are
not empty.

Let v = ts .regs(e). We have:

▷ #»cb = [loopCont(ts .regs, r , (r := chkpt([return r ],mid.lab)) :: #»s , [])] = #»cb

▷ tsb = ts
[
regs 7→ ts .regs[r 7→ v ]

]
= tsb

We apply Theorem B.6.10 to EXB1’s later transitions and do case analysis on the lemma’s conclusion:

◦ (loop-done):

For this sub-case, we have:

(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmts
tr/ #»cb−−−→

∗

δ (break) :: #»sr ,
#»cb, ts r,mmtsω ∧

#»sω = [] ∧ # »cω = [] ∧ tsω = ⟨regs : ts .regs; time : ts r.time⟩ .

We identify the first execution’s last iteration by applying Theorem B.6.12 as follows:
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∃ts1,mmts1, tr1, tr2.

tr = tr1 ++ tr2 ∧
(((tsb,mmts ) = (ts1,mmts1) ∧ tr1 = []) ∨
(∃e, #»sr , ts r. (r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmts

tr1/
#»cb−−−−→

∗

δ (continue e) :: #»sr ,
#»cb, ts r,mmts1 ∧

ts1 = ⟨regs : σ[r 7→ ts r.regs(e)]; time : ts r.time⟩)) ∧
#»cb = [] ++ #»cb ∧
(r := chkpt([return r ],mid.lab)) :: #»s , [], ts1,mmts1

tr2−−→
∗
δ (break) :: #»sr , [], ts r,mmtsω .

We do a case analysis on
(r := chkpt([return r ],mid.lab)) :: #»s , [], ts1,mmts1

tr2−−→
∗
δ (break) :: #»sr , [], ts r,mmtsω : chkpt-

call or chkpt-replay.

· (chkpt-call):
From the semantics, EX1 can take only the following steps:
(r := chkpt([return r ],mid.lab)) :: #»s , [], ts1,mmts1
[]−→δ [return r ], #    »cchk, ts1,mmts1
[]−→δ

#»s , [], ts(1,1),mmts(1,1)
tr2−−→

∗
δ (break) :: #»sr , [], ts r,mmtsω .

From Theorem B.6.7, we have:
mmts(1,1)|midsc = mmtsω|midsc .

From NIN , we have:
mmts(1,1)[mid ] = mmtsω[mid ] .

From Theorem B.6.14, we have:
tsb.time ≤ ts1.time .

From ts1.time < mmts(1,1)[mid ].time = mmtsω[mid ].time, by chkpt-replay, we have:

(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω
[]−→δ

#»s , #»cb, ts1,mmtsω .

From ts(1,1).regs(r) = mmts(1,1)[mid ].val = mmtsω[mid ].val = ts1.regs(r)

and ts(1,1).time = mmts(1,1)[mid ].time = mmtsω[mid ].time = ts1.time, we have:
ts(1,1) = ts1 .

We apply Theorem B.6.10 to EXB2’s later transitions,
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω

tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω ,
and do case analysis on the lemma’s conclusion:

† (loop-done):
For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, ts ,mmtsω
[]−→δ

#»s , #»cb, ts(1,1),mmtsω
tr/ #»cb−−−→

∗

δ (break) :: #»sr ,
#»cb, ts r,mmtsω ∧
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#»sω = [] ∧ # »cω = [] ∧ tsω = ⟨regs : ts .regs; time : ts r.time⟩ .

Again, we identify the second execution’s first iteration by applying Theorem B.6.11 to
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, ts ,mmtsω
tr/ #»cb−−−→

∗

δ (break) :: #»sr ,
#»cb, ts r,mmtsω .

‡ (first-done):
For this sub-case, we have:
∃ #»s2, ts2,mmts2, tr1, tr2, e. tr = tr1 ++ tr2 ∧
(r := chkpt([return r ],mid.lab)) :: #»s , [], tsb,mmtsω
[]−→δ

#»s , [], ts(1,1),mmtsω
tr1−−→

∗

δ (continue e) :: #»s2, [], ts2,mmts2 ∧

(continue e) :: #»s2,
#»cb, ts2,mmts2

tr2/
#»cb−−−−→

∗

δ (break) :: #»sr ,
#»cb, ts r,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts(1,1)

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmts2 ∧

trh ∼ tr2 ++ tr1 ∧
(STOP((break) :: #»sr , []) −→
(break) :: #»sr =

#»sh ∧ [] = #»ch ∧ ts r = tsh ∧ mmtsω = mmts2 ∧ [] ∼ tr) ∧
(STOP((continue e) :: #»s2, []) −→ (continue e) :: #»s2 = #»sh ∧ [] = #»ch ∧ ts2 = tsh) .

From STOP((break) :: #»sr , []) and STOP((continue e) :: #»s2, []), we have:
(break) :: #»sω = #»sh = (continue e) :: #»s2, which is a contradiction.

‡ (first-ongoing):
For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , [], ts ,mmtsω

[]−→δ
#»s , [], ts(1,1),mmtsω

tr
−→

∗

δ (break) :: #»sr , [], ts r,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts(1,1)

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmtsω ∧

trh ∼ tr2 ++ tr ∧
(STOP((break) :: #»sr , []) −→
(break) :: #»sr =

#»sh ∧ [] = #»ch ∧ ts r = tsh ∧ mmtsω = mmtsω ∧ [] ∼ tr) ∧
(STOP((break) :: #»sr , []) −→ (break) :: #»sr =

#»sh ∧ [] = #»ch ∧ ts r = tsh) .

From STOP((break) :: #»sr , []) and STOP((break) :: #»sr , []), we have:
(break) :: #»sr = (break) :: #»sr =

#»sh

∧ [] = #»ch ∧ ts r = ts r = tsh ∧ mmtsω = mmtsω ∧ [] ∼ tr .

From ts r = ts r, we have:
tsω = tsω .
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We prove the goals with trx = tr, #»sx = [], #»cx = [], tsx = tsω as follows:

(1) [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts
tr−→

∗
δ (break) :: #»sr ,

#»cb, ts r,mmtsω
[]−→δ [], [], ts r,mmtsω

(2) From [] ∼ tr, we have: tr ∼ tr ++ tr

(3) [] = [] ∧ [] = [] ∧ tsω = tsω ∧ mmtsω = mmtsω ∧ [] ∼ tr

(4) [] = [] ∧ [] = [] ∧ tsω = tsω

† (loop-ongoing):
For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω

tr/ #»cb−−−→
∗

δ
#»sω,

# »cω, tsω,mmtsω .

Again, we identify the second execution’s first iteration by applying Theorem B.6.11 to

(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω
tr/ #»cb−−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω .

‡ (first-done):
For this sub-case, we have:
∃ #»s2, ts2,mmts2, tr1, tr2, e. tr = tr1 ++ tr2 ∧
(r := chkpt([return r ],mid.lab)) :: #»s , [], tsb,mmtsω
[]−→δ

#»s , [], ts(1,1),mmtsω
tr1−−→

∗

δ (continue e) :: #»s2, [], ts2,mmts2 ∧

(continue e) :: #»s2,
#»cb, ts2,mmts2

tr2/
#»cb−−−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts(1,1)

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmts2 ∧

trh ∼ tr2 ++ tr1 ∧
(STOP((break) :: #»sr , []) −→
(break) :: #»sr =

#»sh ∧ [] = #»ch ∧ ts r = tsh ∧ mmtsω = mmts2 ∧ [] ∼ tr) ∧
(STOP((continue e) :: #»s2, []) −→ (continue e) :: #»s2 = #»sh ∧ [] = #»ch ∧ ts2 = tsh) .

From STOP((break) :: #»sr , []) and STOP((continue e) :: #»s2, []), we have:
(break) :: #»sω = #»sh = (continue e) :: #»s2, which is a contradiction.

‡ (first-ongoing):
For this sub-case, we have:
∃ #   »cpfx.

# »cω = #   »cpfx ++
#»cb ∧

(r := chkpt([return r ],mid.lab)) :: #»s , [], ts ,mmtsω
[]−→δ

#»s , [], ts(1,1),mmtsω
tr
−→

∗

δ
#»sω,

#   »cpfx, tsω,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts(1,1)

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmtsω ∧

trh ∼ tr2 ++ tr ∧
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(STOP((break) :: #»sr , []) −→
(break) :: #»sr =

#»sh ∧ [] = #»ch ∧ ts r = tsh ∧ mmtsω = mmtsω ∧ [] ∼ tr) ∧
(STOP( #»sω,

#   »cpfx) −→ #»sω = #»sh ∧ #   »cpfx =
#»ch ∧ tsω = tsh) .

From STOP((break) :: #»sr , []), we have:
(break) :: #»sr =

#»sh

∧ [] = #»ch ∧ ts r = tsh ∧ mmtsω = mmtsω ∧ [] ∼ tr .

We prove the goals with trx = tr, #»sx = [], #»cx = [], tsx = tsω as follows:

(1) [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts
tr−→

∗
δ (break) :: #»sr ,

#»cb, ts r,mmtsω
[]−→δ [], [], ts r,mmtsω

(2) From [] ∼ tr, we have: tr ∼ tr ++ tr

(3) [] = [] ∧ [] = [] ∧ tsω = tsω ∧ mmtsω = mmtsω ∧ [] ∼ tr

(4) From # »cω = #   »cpfx ++
#»cb, we have: ¬STOP( #»sω, )

· (chkpt-replay):
For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , [], ts1,mmts1
[]−→δ

#»s , [], ts(1,1),mmts1
tr2−−→

∗
δ (break) :: #»sr , [], ts r,mmtsω .

From Theorem B.6.7, we have:
mmts1|midsc = mmtsω|midsc .

From NIN , we have:
mmts1[mid ] = mmtsω[mid ] .

From Theorem B.6.14, we have: tsb.time ≤ ts1.time .

From ts1.time < mmts1[mid ].time = mmtsω[mid ].time, by chkpt-replay, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω

[]−→δ
#»s , #»cb, ts1,mmtsω .

From ts(1,1).regs(r) = mmts1[mid ].val = mmtsω[mid ].val = ts1.regs(r)

and ts(1,1).time = mmts1[mid ].time = mmtsω[mid ].time = ts1.time, we have:
ts(1,1) = ts1 .

We apply Theorem B.6.10 to to EXB2’s later transitions,
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω

tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω ,
and do case analysis on the lemma’s conclusion:

† (loop-done):
For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, ts ,mmtsω
[]−→δ

#»s , #»cb, ts(1,1),mmtsω

113



tr/ #»cb−−−→
∗

δ (break) :: #»sr ,
#»cb, ts r,mmtsω ∧

#»sω = [] ∧ # »cω = [] ∧ tsω = ⟨regs : ts .regs; time : ts r.time⟩ .

Again, we identify the second execution’s first iteration by applying Theorem B.6.11 to
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, ts ,mmtsω
tr/ #»cb−−−→

∗

δ (break) :: #»sr ,
#»cb, ts r,mmtsω .

‡ (first-done):
For this sub-case, we have:
∃ #»s2, ts2,mmts2, tr1, tr2, e. tr = tr1 ++ tr2 ∧
(r := chkpt([return r ],mid.lab)) :: #»s , [], tsb,mmtsω
[]−→δ

#»s , [], ts(1,1),mmtsω
tr1−−→

∗

δ (continue e) :: #»s2, [], ts2,mmts2 ∧

(continue e) :: #»s2,
#»cb, ts2,mmts2

tr2/
#»cb−−−−→

∗

δ (break) :: #»sr ,
#»cb, ts r,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts1

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmts2 ∧

trh ∼ tr2 ++ tr1 ∧
(STOP((break) :: #»sr , []) −→
(break) :: #»sr =

#»sh ∧ [] = #»ch ∧ ts r = tsh ∧ mmtsω = mmts2 ∧ [] ∼ tr) ∧
(STOP((continue e) :: #»s2, []) −→ (continue e) :: #»s2 = #»sh ∧ [] = #»ch ∧ ts2 = tsh) .

From STOP((break) :: #»sr , []) and STOP((continue e) :: #»s2, []), we have:
(break) :: #»sω = #»sh = (continue e) :: #»s2, which is a contradiction.

‡ (first-ongoing):
For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , [], ts ,mmtsω
[]−→δ

#»s , [], ts(1,1),mmtsω
tr
−→

∗

δ (break) :: #»sr , [], ts r,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts1

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmtsω ∧

trh ∼ tr2 ++ tr ∧
(STOP((break) :: #»sr , []) −→
(break) :: #»sr =

#»sh ∧ [] = #»ch ∧ ts r = tsh ∧ mmtsω = mmtsω ∧ [] ∼ tr) ∧
(STOP((break) :: #»sr , []) −→ (break) :: #»sr =

#»sh ∧ [] = #»ch ∧ ts r = tsh) .

From STOP((break) :: #»sr , []) and STOP((break) :: #»sr , []), we have:
(break) :: #»sr = (break) :: #»sr =

#»sh

∧ [] = #»ch ∧ ts r = ts r = tsh ∧ mmtsω = mmtsω ∧ [] ∼ tr .

From ts r = ts r, we have:
tsω = tsω .
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We prove the goals with trx = tr, #»sx = [], #»cx = [], tsx = tsω as follows:

(1) [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts
tr−→

∗
δ (break) :: #»sr ,

#»cb, ts r,mmtsω
[]−→δ [], [], ts r,mmtsω

(2) From [] ∼ tr, we have: tr ∼ tr ++ tr

(3) [] = [] ∧ [] = [] ∧ tsω = tsω ∧ mmtsω = mmtsω ∧ [] ∼ tr

(4) [] = [] ∧ [] = [] ∧ tsω = tsω

† (loop-ongoing):
For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω

tr/ #»cb−−−→
∗

δ
#»sω,

# »cω, tsω,mmtsω .

Again, we identify the second execution’s first iteration by applying Theorem B.6.11 to

(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω
tr/ #»cb−−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω .

‡ (first-done):
For this sub-case, we have:
∃ #»s2, ts2,mmts2, tr1, tr2, e. tr = tr1 ++ tr2 ∧
(r := chkpt([return r ],mid.lab)) :: #»s , [], tsb,mmtsω
[]−→δ

#»s , [], ts(1,1),mmtsω
tr1−−→

∗

δ (continue e) :: #»s2, [], ts2,mmts2 ∧

(continue e) :: #»s2,
#»cb, ts2,mmts2

tr2/
#»cb−−−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts1

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmts2 ∧

trh ∼ tr2 ++ tr1 ∧
(STOP((break) :: #»sr , []) −→
(break) :: #»sr =

#»sh ∧ [] = #»ch ∧ ts r = tsh ∧ mmtsω = mmts2 ∧ [] ∼ tr) ∧
(STOP((continue e) :: #»s2, []) −→ (continue e) :: #»s2 = #»sh ∧ [] = #»ch ∧ ts2 = tsh) .

From STOP((break) :: #»sr , []) and STOP((continue e) :: #»s2, []), we have:
(break) :: #»sω = #»sh = (continue e) :: #»s2, which is a contradiction.

‡ (first-ongoing):
For this sub-case, we have:
∃ #   »cpfx.

# »cω = #   »cpfx ++
#»cb ∧

(r := chkpt([return r ],mid.lab)) :: #»s , [], ts ,mmtsω
[]−→δ

#»s , [], ts(1,1),mmtsω
tr
−→

∗

δ
#»sω,

#   »cpfx, tsω,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts1

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmtsω ∧

trh ∼ tr2 ++ tr ∧
(STOP((break) :: #»sr , []) −→
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(break) :: #»sr =
#»sh ∧ [] = #»ch ∧ ts r = tsh ∧ mmtsω = mmtsω ∧ [] ∼ tr) ∧

(STOP( #»sω,
#   »cpfx) −→ #»sω = #»sh ∧ #   »cpfx =

#»ch ∧ tsω = tsh) .

From STOP((break) :: #»sr , []), we have:
(break) :: #»sr =

#»sh

∧ [] = #»ch ∧ ts r = tsh ∧ mmtsω = mmtsω ∧ [] ∼ tr .

We prove the goals with trx = tr, #»sx = [], #»cx = [], tsx = tsω as follows:

(1) [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts
tr−→

∗
δ (break) :: #»sr ,

#»cb, ts r,mmtsω
[]−→δ [], [], ts r,mmtsω

(2) From [] ∼ tr, we have: tr ∼ tr ++ tr

(3) [] = [] ∧ [] = [] ∧ tsω = tsω ∧ mmtsω = mmtsω ∧ [] ∼ tr

(4) From # »cω = #   »cpfx ++
#»cb, we have: ¬STOP( #»sω, )

◦ (loop-ongoing):
For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmts

tr/ #»cb−−−→
∗

δ
#»sω,

# »cω, tsω,mmtsω .

We identify the first execution’s last iteration by applying Theorem B.6.12, we have (LAST-ITER):
∃ts1,mmts1, tr1, tr2.

tr = tr1 ++ tr2 ∧
(((tsb,mmts ) = (ts1,mmts1) ∧ tr1 = []) ∨
(∃e, #»sr , ts r. (r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmts

tr1/
#»cb−−−−→

∗

δ (continue e) :: #»sr ,
#»cb, ts r,mmts1 ∧

ts1 = ⟨regs : σ[r 7→ ts r.regs(e)]; time : ts r.time⟩)) ∧
# »cω = #   »cpfx ++

#»cb ∧
(r := chkpt([return r ],mid.lab)) :: #»s , [], ts1,mmts1

tr2−−→
∗
δ

#»sω,
#   »cpfx, tsω,mmtsω .

We do a case analysis on the transitions (r := chkpt([return r ],mid.lab)) :: #»s , [], ts1,mmts1
tr2−−→

∗
δ

#»sω,
#   »cpfx, tsω,mmtsω :

(1) The transitions are empty;
(2) The transitions are just chkpt-call;
(3) The transitions begin with chkpt-call and then chkpt-return; or
(4) The transitions begin with chkpt-replay.

We prove for each case.

· (1), (2) The transitions are empty or just chkpt-call:

In these cases, EXB1’s last loop iteration does not finish its chkpt() operation for the dependent
variable before the crash. As such, EXB2 recovers from EXB1’s second last loop iteration, first by
retrieving its dependent variable checkpointed in its memento.
For these cases, we have tr2 = [].
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We do a case analysis on the part of LAST-ITER,

† N-ITER: (tsb,mmts ) = (ts1,mmts1) ∧ tr1 = []

† (N-1)-ITER: ∃e, #»sr , ts r. (r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmts
tr1/

#»cb−−−−→
∗

δ (continue e) :: #»sr ,
#»cb, ts r,mmts1 ∧

ts1 = ⟨regs : σ[r 7→ ts r.regs(e)]; time : ts r.time⟩

For the N-ITER, the proof is essentially the same with the case that EX1 itself is empty transitions
(the entire proof’s first case).

For the (N-1)-ITER, we identify the first execution’s second last iteration
by applying Theorem B.6.12 again to
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmts

tr1/
#»cb−−−−→

∗

δ (continue e) :: #»sr ,
#»cb, ts r,mmts1.

Then we have:
∃ts0,mmts0, tr(1,1), tr(1,2).

tr1 = tr(1,1) ++ tr(1,2) ∧
(((tsb,mmts ) = (ts0,mmts0) ∧ tr(1,1) = []) ∨
(∃e0, # »sr0, ts r0. (r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmts

tr1/
#»cb−−−−→

∗

δ (continue e) :: # »sr0,
#»cb, ts r0,mmts0 ∧

ts0 = ⟨regs : σ[r 7→ ts r0.regs(e)]; time : ts r0.time⟩)) ∧
#»cb = [] ++ #»cb ∧
(r := chkpt([return r ],mid.lab)) :: #»s , [], ts0,mmts0
tr(1,2)−−−−→

∗

δ (continue e) :: #»sr , [], ts r,mmts1 .

From above, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , [], ts0,mmts0
tr(1,2)−−−−→

∗

δ (continue e) :: #»sr , [], ts r,mmts1
tr2−−→

∗
δ

#»sω,
#   »cpfx, tsω,mmtsω .

From here, the proof is essentially the same with the following cases for (3) and (4).

· (3) The transitions begin with chkpt-call and then chkpt-return:

For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , [], ts1,mmts1
[]−→δ [return r ], #            »c(1,chk), ts1,mmts1
[]−→δ

#»s , [], ts(1,1),mmts(1,1)
tr2−−→

∗
δ

#»sω,
#   »cpfx, tsω,mmtsω .

From Theorem B.6.7, we have:
mmts(1,1)|midsc = mmtsω|midsc .

From NIN , we have:
mmts(1,1)[mid ] = mmtsω[mid ] .
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From Theorem B.6.14, we have:
tsb.time ≤ ts1.time .

From ts1.time < mmts(1,1)[mid ].time = mmtsω[mid ].time, by chkpt-replay, we have:

(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω
[]−→δ

#»s , #»cb, ts1,mmtsω .

From ts(1,1).regs(r) = mmts(1,1)[mid ].val = mmtsω[mid ].val = ts1.regs(r)

and ts(1,1).time = mmts(1,1)[mid ].time = mmtsω[mid ].time = ts1.time, we have:
ts(1,1) = ts1 .

We apply Theorem B.6.10 to EXB2’s later transitions,
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω

tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω ,
and do case analysis on the lemma’s conclusion:

† (loop-done):
For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, ts ,mmtsω
[]−→δ

#»s , #»cb, ts(1,1),mmtsω
tr/ #»cb−−−→

∗

δ (break) :: #»sr ,
#»cb, ts r,mmtsω ∧

#»sω = [] ∧ # »cω = [] ∧ tsω = ⟨regs : ts .regs; time : ts r.time⟩ .

Again, we identify the second execution’s first iteration by applying Theorem B.6.11 to
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, ts ,mmtsω
tr/ #»cb−−−→

∗

δ (break) :: #»sr ,
#»cb, ts r,mmtsω .

‡ (first-done):
For this sub-case, we have:
∃ #»s2, ts2,mmts2, tr1, tr2, e. tr = tr1 ++ tr2 ∧
(r := chkpt([return r ],mid.lab)) :: #»s , [], tsb,mmtsω
[]−→δ

#»s , [], ts(1,1),mmtsω
tr1−−→

∗

δ (continue e) :: #»s2, [], ts2,mmts2 ∧

(continue e) :: #»s2,
#»cb, ts2,mmts2

tr2/
#»cb−−−−→

∗

δ (break) :: #»sr ,
#»cb, ts r,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts(1,1)

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmts2 ∧

trh ∼ tr2 ++ tr1 ∧
(STOP( #»sω,

#   »cpfx) −→ #»sω = #»sh ∧ #   »cpfx =
#»ch ∧ tsω = tsh ∧ mmtsω = mmts2 ∧ [] ∼ tr) ∧

(STOP((continue e) :: #»s2, []) −→ (continue e) :: #»s2 = #»sh ∧ [] = #»ch ∧ ts2 = tsh) .

From STOP((continue e) :: #»s2, []), we have:
(continue e) :: #»s2 = #»sh ∧ [] = #»ch ∧ ts2 = tsh .

From Theorem B.6.5, we have:
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#»s , #»cb, ts(1,1),mmts(1,1)
trh−−→

∗
δ (continue e) :: #»s2,

#»cb, ts2,mmts2 .

We prove the goals with trx = tr1 ++ trh ++ tr2,
#»sx = [], #»cx = [], tsx = tsω as follows:

(1) [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts
tr1−−→

∗
δ

#»s , #»cb, ts(1,1),mmts(1,1)
trh−−→

∗
δ (continue e) :: #»s2,

#»cb, ts2,mmts2
tr2−−→

∗

δ (break) :: #»sr ,
#»cb, ts r,mmtsω

[]−→δ [], [], tsω,mmtsω

(2) From tr = tr1 ++ tr2 and trh ∼ tr2 ++ tr1, we have: tr1 ++ trh ++ tr2 ∼ tr ++ tr

(3) From # »cω = #   »cpfx ++
#»cb, we have: ¬STOP( #»sω,

# »cω)

(4) [] = [] ∧ [] = [] ∧ tsω = tsω

‡ (first-ongoing):
For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , [], ts ,mmtsω
[]−→δ

#»s , [], ts(1,1),mmtsω
tr
−→

∗

δ (break) :: #»sr , [], ts r,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts(1,1)

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmtsω ∧

trh ∼ tr2 ++ tr ∧
(STOP( #»sω,

#   »cpfx) −→ #»sω = #»sh ∧ #   »cpfx =
#»ch ∧ tsω = tsh ∧ mmtsω = mmtsω ∧ [] ∼ tr) ∧

(STOP((break) :: #»sr , []) −→ (break) :: #»sr =
#»sh ∧ [] = #»ch ∧ ts r = tsh) .

From STOP((continue e) :: #»s2, []), we have:
(break) :: #»sr =

#»sh ∧ [] = #»ch ∧ ts r = tsh .

From Theorem B.6.5, we have:
#»s , #»cb, ts(1,1),mmts(1,1)

trh−−→
∗
δ (break) :: #»sr ,

#»cb, ts r,mmtsω .

We prove the goals with trx = tr1 ++ trh,
#»sx = [], #»cx = [], tsx = tsω as follows:

(1) [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts
tr1−−→

∗
δ

#»s , #»cb, ts(1,1),mmts(1,1)
trh−−→

∗
δ (break) :: #»sr ,

#»cb, ts r,mmtsω
[]−→δ [], [], tsω,mmtsω

(2) From tr = tr1 ++ tr2 and trh ∼ tr2 ++ tr, we have: tr1 ++ trh ++ tr ∼ tr ++ tr

(3) From # »cω = #   »cpfx ++
#»cb, we have: ¬STOP( #»sω,

# »cω)

(4) [] = [] ∧ [] = [] ∧ tsω = tsω

† (loop-ongoing):
For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω

tr/ #»cb−−−→
∗

δ
#»sω,

# »cω, tsω,mmtsω .

Again, we identify the second execution’s first iteration by applying Theorem B.6.11 to

(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω
tr/ #»cb−−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω .

‡ (first-done):
For this sub-case, we have:
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∃ #»s2, ts2,mmts2, tr1, tr2, e. tr = tr1 ++ tr2 ∧
(r := chkpt([return r ],mid.lab)) :: #»s , [], tsb,mmtsω
[]−→δ

#»s , [], ts(1,1),mmtsω
tr1−−→

∗

δ (continue e) :: #»s2, [], ts2,mmts2 ∧

(continue e) :: #»s2,
#»cb, ts2,mmts2

tr2/
#»cb−−−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts(1,1)

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmts2 ∧

trh ∼ tr2 ++ tr1 ∧
(STOP( #»sω,

#   »cpfx) −→ #»sω = #»sh ∧ #   »cpfx =
#»ch ∧ tsω = tsh ∧ mmtsω = mmts2 ∧ [] ∼ tr) ∧

(STOP((continue e) :: #»s2, []) −→ (continue e) :: #»s2 = #»sh ∧ [] = #»ch ∧ ts2 = tsh) .

From STOP((continue e) :: #»s2, []), we have:
(continue e) :: #»s2 = #»sh ∧ [] = #»ch ∧ ts2 = tsh .

From Theorem B.6.5, we have:
#»s , #»cb, ts(1,1),mmts(1,1)

trh−−→
∗
δ (continue e) :: #»s2,

#»cb, ts2,mmts2 .

We prove the goals with trx = tr1 ++ trh ++ tr2,
#»sx = [], #»cx = [], tsx = tsω as follows:

(1) [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts
tr1−−→

∗
δ

#»s , #»cb, ts(1,1),mmts(1,1)
trh−−→

∗
δ (continue e) :: #»s2,

#»cb, ts2,mmts2
tr2−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

(2) From tr = tr1 ++ tr2 and trh ∼ tr2 ++ tr1, we have: tr1 ++ trh ++ tr2 ∼ tr ++ tr

(3) From # »cω = #   »cpfx ++
#»cb, we have: ¬STOP( #»sω,

# »cω)

(4) For some #   »cpfx, we have: # »cω = #   »cpfx ++
#»cb. Therefore, ¬STOP( #»sω,

# »cω)

‡ (first-ongoing):
For this sub-case, we have:
∃ #   »cpfx.

# »cω = #   »cpfx ++
#»cb ∧

(r := chkpt([return r ],mid.lab)) :: #»s , [], ts ,mmtsω
[]−→δ

#»s , [], ts(1,1),mmtsω
tr
−→

∗

δ
#»sω,

#   »cpfx, tsω,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts(1,1)

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmtsω ∧

trh ∼ tr2 ++ tr ∧
(STOP( #»sω,

#   »cpfx) −→ #»sω = #»sh ∧ #   »cpfx =
#»ch ∧ tsω = tsh ∧ mmtsω = mmts2 ∧ [] ∼ tr) ∧

(STOP( #»sω,
#   »cpfx) −→ #»sω = #»sh ∧ #   »cpfx =

#»ch ∧ tsω = tsh) .

From Theorem B.6.5, we have:
#»s , #»cb, ts(1,1),mmts(1,1)

trh−−→
∗
δ

#»sh,
#»ch ++

#»cb, tsh,mmtsω .

We prove the goals with trx = tr1 ++ trh,
#»sx = #»sh,

#»cx = #»ch ++
#»cb, tsx = tsh as follows:
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(1) [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts
tr1−−→

∗
δ

#»s , #»cb, ts(1,1),mmts(1,1)
trh−−→

∗
δ

#»sh,
#»ch ++

#»cb, tsh,mmtsω

(2) From tr = tr1 ++ tr2 and trh ∼ tr2 ++ tr, we have: tr1 ++ trh ++ tr ∼ tr ++ tr

(3) From # »cω = #   »cpfx ++
#»cb, we have: ¬STOP( #»sω,

# »cω)

(4) From # »cω = #   »cpfx ++
#»cb, we have: ¬STOP( #»sω,

# »cω)

· (4) The transitions begin with chkpt-replay:

For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , [], ts1,mmts1
[]−→δ

#»s , [], ts(1,1),mmts1
tr2−−→

∗
δ

#»sω,
#   »cpfx, tsω,mmtsω .

From Theorem B.6.7, we have:
mmts1|midsc = mmtsω|midsc .

From NIN , we have:
mmts1[mid ] = mmtsω[mid ] .

From Theorem B.6.14, we have:
tsb.time ≤ ts1.time .

From ts1.time < mmts1[mid ].time = mmtsω[mid ].time, by chkpt-replay, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω

[]−→δ
#»s , #»cb, ts1,mmtsω .

From ts(1,1).regs(r) = mmts1[mid ].val = mmtsω[mid ].val = ts1.regs(r)

and ts(1,1).time = mmts1[mid ].time = mmtsω[mid ].time = ts1.time, we have:
ts(1,1) = ts1 .

We apply Theorem B.6.10 to EXB2’s later transitions,
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω

tr
−→

∗

δ
#»sω,

# »cω, tsω,mmtsω ,
and do case analysis on the lemma’s conclusion:

† (loop-done):
For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, ts ,mmtsω
[]−→δ

#»s , #»cb, ts(1,1),mmtsω
tr/ #»cb−−−→

∗

δ (break) :: #»sr ,
#»cb, ts r,mmtsω ∧

#»sω = [] ∧ # »cω = [] ∧ tsω = ⟨regs : ts .regs; time : ts r.time⟩ .

Again, we identify the second execution’s first iteration by applying Theorem B.6.11 to
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, ts ,mmtsω
tr/ #»cb−−−→

∗

δ (break) :: #»sr ,
#»cb, ts r,mmtsω .

‡ (first-done):
For this sub-case, we have:
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∃ #»s2, ts2,mmts2, tr1, tr2, e. tr = tr1 ++ tr2 ∧
(r := chkpt([return r ],mid.lab)) :: #»s , [], tsb,mmtsω
[]−→δ

#»s , [], ts(1,1),mmtsω
tr1−−→

∗

δ (continue e) :: #»s2, [], ts2,mmts2 ∧

(continue e) :: #»s2,
#»cb, ts2,mmts2

tr2/
#»cb−−−−→

∗

δ (break) :: #»sr ,
#»cb, ts r,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts1

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmts2 ∧

trh ∼ tr2 ++ tr1 ∧
(STOP( #»sω,

#   »cpfx) −→ #»sω = #»sh ∧ #   »cpfx =
#»ch ∧ tsω = tsh ∧ mmtsω = mmts2 ∧ [] ∼ tr) ∧

(STOP((continue e) :: #»s2, []) −→ (continue e) :: #»s2 = #»sh ∧ [] = #»ch ∧ ts2 = tsh) .

From STOP((continue e) :: #»s2, []), we have:
(continue e) :: #»s2 = #»sh ∧ [] = #»ch ∧ ts2 = tsh .

From Theorem B.6.5, we have:
#»s , #»cb, ts(1,1),mmts1

trh−−→
∗
δ (continue e) :: #»s2,

#»cb, ts2,mmts2 .

We prove the goals with trx = tr1 ++ trh ++ tr2,
#»sx = [], #»cx = [], tsx = tsω as follows:

(1) [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts
tr1−−→

∗
δ

#»s , #»cb, ts(1,1),mmts1
trh−−→

∗
δ (continue e) :: #»s2,

#»cb, ts2,mmts2
tr2−−→

∗

δ (break) :: #»sr ,
#»cb, ts r,mmtsω

[]−→δ [], [], tsω,mmtsω

(2) From tr = tr1 ++ tr2 and trh ∼ tr2 ++ tr1, we have: tr1 ++ trh ++ tr2 ∼ tr ++ tr

(3) From # »cω = #   »cpfx ++
#»cb, we have: ¬STOP( #»sω,

# »cω)

(4) [] = [] ∧ [] = [] ∧ tsω = tsω

‡ (first-ongoing):
For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , [], ts ,mmtsω
[]−→δ

#»s , [], ts(1,1),mmtsω
tr
−→

∗

δ (break) :: #»sr , [], ts r,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts1

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmtsω ∧

trh ∼ tr2 ++ tr ∧
(STOP( #»sω,

#   »cpfx) −→ #»sω = #»sh ∧ #   »cpfx =
#»ch ∧ tsω = tsh ∧ mmtsω = mmtsω ∧ [] ∼ tr) ∧

(STOP((break) :: #»sr , []) −→ (break) :: #»sr =
#»sh ∧ [] = #»ch ∧ ts r = tsh) .

From STOP((continue e) :: #»s2, []), we have:
(break) :: #»sr =

#»sh ∧ [] = #»ch ∧ ts r = tsh .

From Theorem B.6.5, we have:
#»s , #»cb, ts(1,1),mmts1

trh−−→
∗
δ (break) :: #»sr ,

#»cb, ts r,mmtsω .
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We prove the goals with trx = tr1 ++ trh,
#»sx = [], #»cx = [], tsx = tsω as follows:

(1) [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts
tr1−−→

∗
δ

#»s , #»cb, ts(1,1),mmts1
trh−−→

∗
δ (break) :: #»sr ,

#»cb, ts r,mmtsω
[]−→δ [], [], tsω,mmtsω

(2) From tr = tr1 ++ tr2 and trh ∼ tr2 ++ tr, we have: tr1 ++ trh ++ tr ∼ tr ++ tr

(3) From # »cω = #   »cpfx ++
#»cb, we have: ¬STOP( #»sω,

# »cω)

(4) [] = [] ∧ [] = [] ∧ tsω = tsω

† (loop-ongoing):
For this sub-case, we have:
(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω

tr/ #»cb−−−→
∗

δ
#»sω,

# »cω, tsω,mmtsω .

Again, we identify the second execution’s first iteration by applying Theorem B.6.11 to

(r := chkpt([return r ],mid.lab)) :: #»s , #»cb, tsb,mmtsω
tr/ #»cb−−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω .

‡ (first-done):
For this sub-case, we have:
∃ #»s2, ts2,mmts2, tr1, tr2, e. tr = tr1 ++ tr2 ∧
(r := chkpt([return r ],mid.lab)) :: #»s , [], tsb,mmtsω
[]−→δ

#»s , [], ts(1,1),mmtsω
tr1−−→

∗

δ (continue e) :: #»s2, [], ts2,mmts2 ∧

(continue e) :: #»s2,
#»cb, ts2,mmts2

tr2/
#»cb−−−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts1

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmts2 ∧

trh ∼ tr2 ++ tr1 ∧
(STOP( #»sω,

#   »cpfx) −→ #»sω = #»sh ∧ #   »cpfx =
#»ch ∧ tsω = tsh ∧ mmtsω = mmts2 ∧ [] ∼ tr) ∧

(STOP((continue e) :: #»s2, []) −→ (continue e) :: #»s2 = #»sh ∧ [] = #»ch ∧ ts2 = tsh) .

From STOP((continue e) :: #»s2, []), we have:
(continue e) :: #»s2 = #»sh ∧ [] = #»ch ∧ ts2 = tsh .

From Theorem B.6.5, we have:
#»s , #»cb, ts(1,1),mmts1

trh−−→
∗
δ (continue e) :: #»s2,

#»cb, ts2,mmts2 .

We prove the goals with trx = tr1 ++ trh ++ tr2,
#»sx = [], #»cx = [], tsx = tsω as follows:

(1) [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts
tr1−−→

∗
δ

#»s , #»cb, ts(1,1),mmts1
trh−−→

∗
δ (continue e) :: #»s2,

#»cb, ts2,mmts2
tr2−−→

∗

δ
#»sω,

# »cω, tsω,mmtsω

(2) From tr = tr1 ++ tr2 and trh ∼ tr2 ++ tr1, we have: tr1 ++ trh ++ tr2 ∼ tr ++ tr

(3) From # »cω = #   »cpfx ++
#»cb, we have: ¬STOP( #»sω,

# »cω)

(4) For some #   »cpfx, we have: # »cω = #   »cpfx ++
#»cb. Therefore, ¬STOP( #»sω,

# »cω)

‡ (first-ongoing):
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For this sub-case, we have:
∃ #   »cpfx.

# »cω = #   »cpfx ++
#»cb ∧

(r := chkpt([return r ],mid.lab)) :: #»s , [], ts ,mmtsω
[]−→δ

#»s , [], ts(1,1),mmtsω
tr
−→

∗

δ
#»sω,

#   »cpfx, tsω,mmtsω .

From IH , we have:
∃trh, #»sh,

#»ch, tsh.
#»s , [], ts(1,1),mmts1

trh−−→
∗
δ

#»sh,
#»ch, tsh,mmtsω ∧

trh ∼ tr2 ++ tr ∧
(STOP( #»sω,

#   »cpfx) −→ #»sω = #»sh ∧ #   »cpfx =
#»ch ∧ tsω = tsh ∧ mmtsω = mmts2 ∧ [] ∼ tr) ∧

(STOP( #»sω,
#   »cpfx) −→ #»sω = #»sh ∧ #   »cpfx =

#»ch ∧ tsω = tsh) .

From Theorem B.6.5, we have:
#»s , #»cb, ts(1,1),mmts1

trh−−→
∗
δ

#»sh,
#»ch ++

#»cb, tsh,mmtsω .

We prove the goals with trx = tr1 ++ trh,
#»sx = #»sh,

#»cx = #»ch ++
#»cb, tsx = tsh as follows:

(1) [loop r e ((r := chkpt([return r ],mid.lab)) :: #»s )], [], ts ,mmts
tr1−−→

∗
δ

#»s , #»cb, ts(1,1),mmts1
trh−−→

∗
δ

#»sh,
#»ch ++

#»cb, tsh,mmtsω

(2) From tr = tr1 ++ tr2 and trh ∼ tr2 ++ tr, we have: tr1 ++ trh ++ tr ∼ tr ++ tr

(3) From # »cω = #   »cpfx ++
#»cb, we have: ¬STOP( #»sω,

# »cω)

(4) From # »cω = #   »cpfx ++
#»cb, we have: ¬STOP( #»sω,

# »cω)
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